1-4
please, thank you in advance!
1. 3. e-x (1+e- (1+e-x)2 dx 4 √2 (3x-1)³ dx 4 2. 4. 10³dx x²+3x-5 (x+2)²(x-1) dx

Answers

Answer 1

For question 1, we are asked to solve the integral 3e^-x(1+e^-(1+e^-x)^2)dx. This integral requires substitution, where u=1+e^-x and du=-e^-x dx. After substituting, we get the integral 3e^-x(1+u^2)du.

Solving this integral, we get the final answer of 3(e^-x-xe^-x+x+1/3e^-x(2+u^3)+C). For question 2, we are asked to solve the integral 4∫(10³dx)/(x²+3x-5)(x+2)²(x-1). This integral requires partial fraction decomposition, where we break the fraction down into simpler fractions with denominators (x+2)², (x+2), and (x-1). After solving for the coefficients, we get the final answer of 4(7/20 ln|x+2| - 9/8 ln|x-1| + 13/40 ln|x+2|^2 - 1/8(x+2)^(-1) + C). In summary, for question 1 we used substitution and for question 2 we used partial fraction decomposition to solve the given integrals.

To learn more about integral, visit:

https://brainly.com/question/32150751

#SPJ11


Related Questions

(Type an expression using x and y as the variables.) dx dt (Type an expression using t as the variable.) dy (Type an expression using x and y as the variables.) dy dt (Type an expression using t as the variable.) dz dt (Type an expression using t as the variable.) (Type an expression using x and y as the variables.) dx dt (Type an expression using t as the variable.) dy (Type an expression using x and y as the variables.) dy dt (Type an expression using t as the variable.) dz dt (Type an expression using t as the variable.) Use the Chain Rule to find dz dt where z = 4x cos y, x = t4, and y = 5t5

Answers

Using the Chain Rule, dz/dt = -80t^8 cos(5t^5) - 16t^3 sin(5t^5).

To find dz/dt using the Chain Rule, we need to differentiate z = 4x cos(y) with respect to t. Given x = t^4 and y = 5t^5, we can substitute these expressions into z. Thus, z = 4(t^4)cos(5(t^5)).

Taking the derivative of z with respect to t, we apply the Chain Rule. The derivative of 4(t^4)cos(5(t^5)) with respect to t is given by 4(cos(5(t^5)))(4t^3) - 20(t^4)sin(5(t^5))(5t^4). Simplifying, we have -80t^7 cos(5t^5) + 16t^3 sin(5t^5). Therefore, dz/dt = -80t^8 cos(5t^5) - 16t^3 sin(5t^5).

Learn more about Chain rule here: brainly.com/question/31585086

#SPJ11




Find a point on the ellipsoid x2 + 2y2 + z2 = 12 where the tangent plane is perpendicular to the line with parametric equations x=5-6, y = 4+4t, and z=2-2t.

Answers

Point P₁(-8 + 9√2/2, 2√2, 4 - 3√2) is the required point on the ellipsoid whose tangent plane is perpendicular to the given line.

Given: The ellipsoid x² + 2y² + z² = 12.

To find: A point on the ellipsoid where the tangent plane is perpendicular to the line with parametric equations x=5-6, y = 4+4t, and z=2-2t.

Solution:

Ellipsoid x² + 2y² + z² = 12 can be written in a matrix form asXᵀAX = 1

Where A = diag(1/√12, 1/√6, 1/√12) and X = [x, y, z]ᵀ.

Substituting A and X values we get,x²/4 + y²/2 + z²/4 = 1

Differentiating above equation partially with respect to x, y, z, we get,

∂F/∂x = x/2∂F/∂y = y∂F/∂z = z/2

Let P(x₁, y₁, z₁) be the point on the ellipsoid where the tangent plane is perpendicular to the given line with parametric equations.

Let the given line be L : x = 5 - 6t, y = 4 + 4t and z = 2 - 2t.

Direction ratios of the line L are (-6, 4, -2).

Normal to the plane containing line L is (-6, 4, -2) and hence normal to the tangent plane at point P will be (-6, 4, -2).

Therefore, equation of tangent plane to the ellipsoid at point P(x₁, y₁, z₁) is given by-6(x - x₁) + 4(y - y₁) - 2(z - z₁) = 0Simplifying the above equation, we get6x₁ - 2y₁ + z₁ = 31 -----(1)

Now equation of the line L can be written as(t + 1) point form as,(x - 5)/(-6) = (y - 4)/(4) = (z - 2)/(-2)

Let's take x = 5 - 6t to find the values of y and z.

y = 4 + 4t

=> 4t = y - 4

=> t = (y - 4)/4z = 2 - 2t

=> 2t = 2 - z

=> t = 1 - z/2

=> t = (2 - z)/2

Substituting these values of t in x = 5 - 6t, we get

x = 5 - 6(2 - z)/2 => x = -4 + 3z

So the line L can be written as,

y = 4 + 4(y - 4)/4

=> y = yz = 2 - 2(2 - z)/2

=> z = -t + 3

Taking above equations (y = y, z = -t + 3) in equation of ellipsoid, we get

x² + 2y² + (3 - z)²/4 = 12Substituting x = -4 + 3z, we get3z² - 24z + 49 = 0On solving the above quadratic equation, we get z = 4 ± 3√2

Substituting these values of z in x = -4 + 3z, we get x = -8 ± 9√2/2

Taking these values of x, y and z, we get 2 points P₁(-8 + 9√2/2, 2√2, 4 - 3√2) and P₂(-8 - 9√2/2, -2√2, 4 + 3√2).

To find point P₁, we need to satisfy equation (1) i.e.,6x₁ - 2y₁ + z₁ = 31

Putting values of x₁, y₁ and z₁ in above equation, we get

LHS = 6(-8 + 9√2/2) - 2(2√2) + (4 - 3√2) = 31

RHS = 31

To learn more about tangent plane, refer:-

https://brainly.com/question/30565764

#SPJ11

necessary. Evaluate the following definite integral and round the answers to 3 decimals places when u=2x. dus adx, no å du=dx a) 3.04 5e2x dx * 5S0aedu - SC Soo edu) 0.1 0.2 0.2 2 - Leos 202) 2.5103

Answers

The entire definite integral evaluates to 2.51 (rounded to 3 decimal places) when the antiderivative of any function f(x) is given by ∫ f(x) dx.

The definite integral provided is as follows:

∫ 5e2x dx * 5∫₀²x aedu - ∫₀¹² edu + ∫₂¹ 2 - L[tex]e^{(2u)[/tex] du

To evaluate this, we can begin by finding the antiderivative of [tex]5e^{(2x)[/tex].

The antiderivative of any function f(x) is given by ∫ f(x) dx.

Since the derivative of [tex]e^{(kx)[/tex] is [tex]ke^{(kx)[/tex], the antiderivative of [tex]5e^{(2x)[/tex] is [tex](5/2)e^{(2x)[/tex].

Therefore, the first term can be rewritten as:

(5/2) ∫ [tex]e^{(2x)[/tex] dx = (5/4) [tex]e^{(2x)[/tex] + C

where C is the constant of integration.

We don't need to worry about the constant for now. Next, we evaluate the definite integral:

∫₀²x aedu = [u[tex]e^u[/tex]]₀²x = 2x[tex]e^{(2x)[/tex] - 2

Finally, we evaluate the other two integrals:

∫₀¹² edu = [u]₀¹² = 12 - 0 = 12∫₂¹ 2 - L[tex]e^{(2u)[/tex] du = [2u - (1/2)[tex]e^{(2u)[/tex]]₂¹ = (4 - e²)/2

Therefore, the entire definite integral evaluates to:

(5/4) [tex]e^{(2x)[/tex] + 2x[tex]e^{(2x)[/tex]) - 2 - 12 + (4 - e²)/2 = (5/4) [tex]e^{(2x)[/tex] + 2x[tex]e^{(2x)[/tex] - 16 + (4 - e²)/2 = (5/4) [tex]e^{(2x)[/tex] + 2x[tex]e^{(2x)[/tex] - 14 + (1/2) e²

The final answer is 2.51 (rounded to 3 decimal places).

Learn more about integration :

https://brainly.com/question/31744185

#SPJ11

The complete question is:

Evaluate the following definite integral and round the answers to 3 decimals places when u=2x. dus adx, no å du=dx a) 3.04 5e2x dx * 5S0aedu - SC Soo edu) 0.1 0.2 0.2 2 - Leos 202) 2.5103 = 2.510 Using a table of integration formulas to find each indefinite integral for parts b&c. b) S 9x6 in x dx. x . c) S 5x (7x +7) 2 os -dx

(0,3,4) +(2,2,1) 6. Determine the Cartesian equation of the plane that contains the line and the point P(2,1,0)

Answers

The Cartesian equation of the plane that contains the line and the point P(2, 1, 0) is -4x - 2y + 8z + 10 = 0.

To determine the Cartesian equation of the plane that contains the line and the point P(2, 1, 0), we need to find the normal vector of the plane.

First, let's find the direction vector of the line. The direction vector is the vector that represents the direction of the line. We can subtract the coordinates of the two given points on the line to find the direction vector.

Direction vector of the line:

(2, 2, 1) - (0, 3, 4) = (2 - 0, 2 - 3, 1 - 4) = (2, -1, -3)

Next, we need to find the normal vector of the plane. The normal vector is perpendicular to the plane and is also perpendicular to the direction vector of the line.

Normal vector of the plane:

The normal vector can be obtained by taking the cross product of the direction vector of the line and another vector in the plane. Since the line is already given, we can choose any vector in the plane to find the normal vector. Let's choose the vector from the point P(2, 1, 0) to one of the points on the line, let's say (0, 3, 4).

Vector from P(2, 1, 0) to (0, 3, 4):

(0, 3, 4) - (2, 1, 0) = (0 - 2, 3 - 1, 4 - 0) = (-2, 2, 4)

Now, we can find the cross product of the direction vector and the vector from P to a point on the line to obtain the normal vector.

Cross product:

(2, -1, -3) x (-2, 2, 4) = [(2*(-3) - (-1)2), ((-3)(-2) - 22), (22 - (-1)*(-2))] = (-4, -2, 8)

The normal vector of the plane is (-4, -2, 8).

Finally, we can write the Cartesian equation of the plane using the normal vector and the coordinates of the point P(2, 1, 0).

Cartesian equation of the plane:

A(x - x₁) + B(y - y₁) + C(z - z₁) = 0

Using P(2, 1, 0) and the normal vector (-4, -2, 8), we have:

-4(x - 2) - 2(y - 1) + 8(z - 0) = 0

Simplifying the equation:

-4x + 8 - 2y + 2 + 8z = 0

-4x - 2y + 8z + 10 = 0

Therefore, the Cartesian equation of the plane that contains the line and the point P(2, 1, 0) is -4x - 2y + 8z + 10 = 0.

Learn more about cartesian at https://brainly.com/question/13262417

#SPJ11

Answer the following general questions about performance and modeling (all in the context of this class, some examples should be included)
1. What is system?
2. What is performance?
3. What is a model? What is the purpose of a model?
4. Why do we build models (as opposed to experiment on actual systems)?
5. Give examples of the performance measure of an amusement park?

Answers

A system refers to a collection of interconnected components or elements that work together to achieve a specific objective or function. It can include various metrics such as speed, efficiency, reliability, accuracy, and responsiveness.  It captures the essential characteristics and relationships to understand, analyze, predict, or simulate the behavior or outcomes of the real-world system. They provide a cost-effective and controlled environment for experimentation, testing, and decision-making without affecting or disrupting actual systems.

1. A system can be any organized collection of interconnected components, such as a computer system, transportation system, or manufacturing system. It can be physical or abstract, consisting of hardware, software, people, processes, and their interactions.

2. Performance is a measure of how well a system or component performs its intended function. It focuses on achieving specific objectives and meeting requirements, which can vary depending on the context. For example, in a computer system, performance can be measured by factors like processing speed, response time, and throughput.

3. A model is a simplified representation of a system or phenomenon. It captures the essential features and relationships to facilitate understanding, analysis, and prediction. Models can be mathematical, statistical, graphical, or computational. They are used to study and simulate the behavior of systems, test hypotheses, make predictions, optimize performance, and support decision-making.

4. Building models allows us to study and analyze complex systems in a controlled and cost-effective manner. It helps us understand the underlying mechanisms, identify bottlenecks, evaluate different scenarios, and make informed decisions without directly experimenting on real systems, which can be costly, time-consuming, or even impossible in some cases.

5. The performance measures for an amusement park can include various aspects such as customer satisfaction, which can be assessed through surveys or ratings. Wait times for rides are important indicators of efficiency and customer experience. Throughput or capacity of rides measures the number of people that can be accommodated per hour. Safety records track incidents and accidents. Revenue and profitability are key financial performance indicators. Cleanliness and maintenance levels affect the overall visitor experience. Employee productivity and customer service ratings reflect the quality of service provided.

Learn more about abstract here:

https://brainly.com/question/32004951

#SPJ11

2 Let f(x) = 3x - 7 and let g(x) = 2x + 1. Find the given value. f(g(3)]

Answers

The value of f(g(3)) is 14.

To find the value of f(g(3)), we need to evaluate the functions g(3) and then substitute the result into the function f.

First, let's find the value of g(3):

g(3) = 2(3) + 1 = 6 + 1 = 7.

Now that we have g(3) = 7, we can substitute it into the function f:

f(g(3)) = f(7).

To find the value of f(7), we need to substitute 7 into the function f:

f(7) = 3(7) - 7 = 21 - 7 = 14.

Therefore, the value of f(g(3)) is 14.

Given the functions f(x) = 3x - 7 and g(x) = 2x + 1, we are asked to find the value of f(g(3)).

To evaluate f(g(3)), we start by evaluating g(3). Since g(x) is a linear function, we can substitute 3 into the function to get g(3):

g(3) = 2(3) + 1 = 6 + 1 = 7.

Next, we substitute the value of g(3) into the function f. Using the expression f(x) = 3x - 7, we substitute x with 7:

f(g(3)) = f(7) = 3(7) - 7 = 21 - 7 = 14.

Therefore, the value of f(g(3)) is 14.

In summary, to find the value of f(g(3)), we first evaluate g(3) by substituting 3 into the function g(x) = 2x + 1, which gives us 7. Then, we substitute the value of g(3) into the function f(x) = 3x - 7 to find the final result of 14.

To learn more about function, click here: brainly.com/question/11624077

#SPJ11

7e7¹ Consider the indefinite integral da: (ez + 3) This can be transformed into a basic integral by letting u and du dx Performing the substitution yields the integral du Integrating yields the resul

Answers

The given indefinite integral ∫(ez + 3) da can be transformed into a basic integral by performing the substitution u = ez + 3 and du = dz. After substituting, we have the integral ∫du. Integrating ∫du gives the result of u + C, where C is the constant of integration.

To solve the given indefinite integral ∫(ez + 3) da, we can simplify it by performing a substitution. Let u = ez + 3. Taking the derivative of u with respect to a, we have du = (d/dz)(ez + 3) da = ez da. Rearranging, we get du = ez da.Substituting u and du into the integral, we have ∫du. This is now a basic integral with respect to u. Integrating ∫du gives us the result of u + C, where C is the constant of integration.Therefore, the final result of the given indefinite integral is u + C, which can be expressed as (ez + 3) + C.

Learn more about  indefinite  here:

https://brainly.com/question/29059587

#SPJ11


Notice that the curve given by the parametric equations x
=64−t^2 y = t^3−9t
is symmetric about the x-axis. (If t gives us the point (x,y),
then −t will give (x,−y) ). At which x value is the

Answers

The x-value where the tangent is horizontal is x = 137/3, the t-value where the tangent is vertical is t = 0 for the parametric equations, and the total area inside the loop is 102/√3 square units.

a. To find the x-value where the tangent to the curve is horizontal, we need to find the derivative of y with respect to t and set it equal to zero.

Differentiating y = t³ - 4t with respect to t gives dy/dt = 3t² - 4. Setting this equal to zero and solving for t, we get t = ±2/√3.

Substituting these values into the equation for x, x = 49 - t², gives x = 49 - (2/√3)² = 137/3.

Therefore, the x-value where the tangent is horizontal is x = 137/3.

b. To find the t-value where the tangent is vertical, we need to find the derivative of x with respect to t and set it equal to zero. Differentiating x = 49 - t² gives dx/dt = -2t.

Setting this equal to zero, we get t = 0.

Therefore, the t-value where the tangent is vertical is t = 0.

c. To find the total area inside the loop of the curve, we need to integrate the absolute value of y with respect to x over the interval where the curve lies along the x-axis.

The loop occurs from t = -2/√3 to t = 2/√3.

Integrating |y| dx from x = 49 - (2/√3)² to x = 49 - (-2/√3)² gives the area = 102/√3 square units.

Learn more about the parametric equations at

https://brainly.com/question/29275326

#SPJ4

The question is -

Notice that the curve given by the parametric equations

x = 49 - t²

y = t³ - 4t

is symmetric about the x-axis. (If t gives us the point (x, y), then -t will give (x, -y) ).

At which x value is tangent to this curve horizontal? x = ?

At which t value is tangent to this curve vertical?

t =

The curve makes a loop that lies along the x-axis. What is the total area inside the loop? Area =

I need these one Guys A And B Please
8 The cost function is given by C(x) = 4000+500x and the revenue function is given by R(x) = 2000x - 60x where x is in thousands and revenue and cost is in thousands of dollars. a) Find the profit fun

Answers

The profit function is given by: P(x) = R(x) - C(x)P(x) = (1940x) - (4000 + 500x) P(x) = 1440x - 4000 Therefore, the profit function is P(x) = 1440x - 4000. The cost function is C(x) = 4000 + 500x thousand dollars.

Given,The cost function is given by C(x) = 4000+500x and the revenue function is given by R(x) = 2000x - 60x

We know that, Profit = Total Revenue - Total Cost

=> P(x) = R(x) - C(x)

Now substitute the given values in the above equation,

P(x) = (2000x - 60x) - (4000+500x)

P(x) = (2000 - 60)x - (4000) - (500x)

P(x) = 1440x - 4000

So, the profit function is given by P(x) = 1440x - 4000.

Here, revenue is expressed in terms of thousands of dollars.

Hence, the revenue function is R(x) = 2000x - 60x = 1940x thousand dollars.

Similarly, the cost function is C(x) = 4000 + 500x thousand dollars.

To know more about the profit function

https://brainly.com/question/16866047

#SPJ11









* Use the definition of the definite integral as the limit of Riemann sums to evaluate [ (4xP-6x2 +1) dx. nº(n + 1) n(n + 1)(2n + 1) Note: Σ - 2 12 4 I=1

Answers

The value of the definite integral ∫[ (4x^3 - 6x^2 + 1) dx] from 1 to 2 can be evaluated using the definition of the definite integral as the limit of Riemann sums.

We start by partitioning the interval [1, 2] into n subintervals of equal width Δx = (2 - 1)/n = 1/n. Let xi be the sample point in each subinterval, where xi = 1 + (i-1)(Δx).

The Riemann sum for the given function over the interval [1, 2] is:

Σ[ (4xi^3 - 6xi^2 + 1) Δx] from i = 1 to n

Expanding the terms, we have:

Σ[ (4(1 + (i-1)(Δx))^3 - 6(1 + (i-1)(Δx))^2 + 1) Δx] from i = 1 to n

Simplifying and factoring Δx, we get:

Σ[ (4(1 + (i-1)/n)^3 - 6(1 + (i-1)/n)^2 + 1) ] Δx from i = 1 to n

Taking the limit as n approaches infinity, this Riemann sum becomes the definite integral:

∫[ (4x^3 - 6x^2 + 1) dx] from 1 to 2

To compute the integral, we can find the antiderivative of the integrand, which is (x^4 - 2x^3 + x) evaluated at the limits of integration:

∫[ (4x^3 - 6x^2 + 1) dx] from 1 to 2 = [(2^4 - 2(2)^3 + 2) - (1^4 - 2(1)^3 + 1)]

Simplifying further, we obtain the numerical value of the definite integral.

To learn more about interval  click here

brainly.com/question/11051767

#SPJ11

6) Which of the following functions have undergone a negative horizontal shift? Select all that
apply.
Give explanation or work for Brainliest.

Answers

The option that gave a negative horizontal shift are

B. y = 3 * 2ˣ⁺² - 3E. y = -2 * 3ˣ⁺² + 3

What is a negative horizontal shift?

In transformation, a negative horizontal shift refers to the movement of a graph or shape to the left on the horizontal axis. it means that each point on the graph is shifted horizontally in the negative direction  which is towards the left side of the coordinate plane.

A negative horizontal shift is shown when x, which represents horizontal axis has a positive value attached to it, just like in the equation below

y = 3 * 2ˣ⁺² - 3 here the shift is 2 units (x + 2)

E. y = -2 * 3ˣ⁺² + 3, also, here the shift is 2 units (x + 2)

Learn more about horizontal shift at

https://brainly.com/question/30285734

#SPJ1





Given the solid Q, formed by the enclosing surfaces y=1-x and z=1 – x2 1. Draw a solid shape Q 2. Draw a projection of solid Q on the XY plane. 3. Find the limit of the integration of S (x, y, z)dzd

Answers

1. Solid shape Q is a three-dimensional object formed by the surfaces y=1-x and z=1-x^2.

2. The projection of solid Q on the XY plane is a region bounded by the curve y=1-x.

3. The limit of the integration of S(x, y, z)dz depends on the specific function S(x, y, z) being integrated and the bounds of the integration. Without more information, the exact limit cannot be determined.

1. Solid shape Q is a three-dimensional object formed by the surfaces y=1-x and z=1-x^2. This means that Q is a solid with a curved surface that lies between the planes y=1-x and z=1-x^2. The shape of Q can be visualized as a curved surface in the three-dimensional space.

2. The projection of solid Q on the XY plane refers to the shadow or footprint that Q would create if it were projected onto a flat surface parallel to the XY plane. In this case, the projection of Q on the XY plane would be a two-dimensional region bounded by the curve y=1-x. This means that if we shine a light from above and project the shadow of Q onto the XY plane, it would create a shape that follows the curve y=1-x.

3. The limit of the integration of S(x, y, z)dz depends on the specific function S(x, y, z) being integrated and the bounds of the integration. In this case, without knowing the function S(x, y, z) and the specific bounds of the integration, it is not possible to determine the exact limit. The limit of integration specifies the range over which the integration should be performed, and it can vary depending on the context and requirements of the problem at hand.

Learn more about requirements here:

https://brainly.com/question/2929431

#SPJ11

Find the intersection. 5x + 2y + 92 = -2, - 7x + 5y - 7z= - 4 2 34 A x = -591 + 39 y= - 28t+ 1 39 Z=39 OB. X = -595 + 2, y = - 28t - 34, z = - 39t O C. x = 59t - 2, y = 28t + -34, z = - 39t OD. x = -2

Answers

The given system of equations is: 5x + 2y + 92 = -2 -7x + 5y - 7z = -4 To find the intersection, we need to solve these equations simultaneously.

Rewrite the equations:

[tex]5x + 2y = -94 (Equation 1')[/tex]

[tex]-7x + 5y - 7z = -4 (Equation 2')[/tex]

Multiply Equation 1' by 7 and Equation 2' by 5 to eliminate x:

[tex]35x + 14y = -658 (Equation 3)[/tex]

[tex]-35x + 25y - 35z = -20 (Equation 4)\\[/tex]

Add Equation 3 and Equation 4 to eliminate x:

[tex]39y - 35z = -678 (Equation 5)\\[/tex]

[tex]39y = 35z - 678[/tex]

We can express y in terms of z:

[tex]y = (35z - 678) / 39[/tex]

Substitute this value of y in Equation 1':

[tex]5x + 2((35z - 678) / 39) = -94[/tex]

Simplify Equation 6 to solve for x:

[tex]x = (-14z - 459.6) / 39[/tex]

Therefore, the correct option is [tex]OD: x = -2.[/tex]

learn more about:- intersection here

https://brainly.com/question/12089275

#SPJ11

-C 3)x+(37) x+(3), siven that 8: =()and X;= (12) 2 2 Consider the system: X' = X are fundamental solutions of the corresponding homogeneous system. Find a particular solution X, = pū of the system using the method of variation of parameters.

Answers

To find a particular solution of the system X' = AX using the method of variation of parameters, we need to determine the coefficients of the fundamental solutions and use them to construct the particular solution.

Given the system X' = X and the fundamental solutions X1 = e^(3t) and X2 = e^(-37t), we can find the particular solution Xp using the method of variation of parameters.

The particular solution Xp is given by Xp = u1X1 + u2X2, where u1 and u2 are coefficients to be determined.

To find u1 and u2, we need to solve the following system of equations:

u1'X1 + u2'X2 = 0, (Equation 1)

u1'X1' + u2'X2' = X;, (Equation 2)

where X; is the given vector (12, 2).

Differentiating X1 and X2, we have X1' = 3e^(3t) and X2' = -37e^(-37t).

Substituting these values into Equation 2 and the given vector values, we obtain:

u1'(3e^(3t)) + u2'(-37e^(-37t)) = 12,

u1'(3e^(3t)) + u2'(-37e^(-37t)) = 2.

Solving this system of equations for u1' and u2', we find their values.

Finally, integrating u1' and u2' with respect to t, we obtain u1 and u2.

Substituting the values of u1 and u2 into the expression for Xp = u1X1 + u2X2, we can determine the particular solution of the system

Learn more about fundamental solutions  here:

https://brainly.com/question/13012670

#SPJ11

Use Green's Theorem to evaluate the line integral along the given positively oriented curve. C 3y + 7e (x)^1/2 dx + 10x + 7 cos(y2) dy C is the boundary of the region enclosed by the parabolas y = x2 and x = y2

Answers

The line integral along the curve C can be evaluated using Green's Theorem, which relates it to a double integral over the region enclosed by the curve.

In this case, the curve C is the boundary of the region enclosed by the parabolas[tex]y = x^2 and x = y^2[/tex]. To evaluate the line integral, we can first find the partial derivatives of the given vector field:

[tex]F = (3y + 7e^(√x)/2) dx + (10x + 7cos(y^2)) dy[/tex]

Taking the partial derivative of the first component with respect to y and the partial derivative of the second component with respect to x, we obtain:

∂F/∂y = 3

[tex]∂F/∂x = 10 + 7cos(y^2)[/tex]

Now, we can calculate the double integral over the region R enclosed by the curve C using these partial derivatives. By applying Green's Theorem, the line integral along C is equal to the double integral over R of the difference of the partial derivatives:

∮C F · dr = ∬R (∂F/∂x - ∂F/∂y) dA

By evaluating this double integral, we can determine the value of the line integral along the given curve.

Learn more about Green's Theorem here:

https://brainly.com/question/32578534

#SPJ11

Using the method of partial fractions, we wish to compute 1 So 2-9x+18 (i) We begin by factoring the denominator of the rational function to obtain: 2²-9z+18=(x-a) (x-b) for a < b. What are a and b ?

Answers

The values of "a" and "b" in the factored form of the denominator, 2² - 9x + 18 = (x - a)(x - b), are the roots of the quadratic equation obtained by setting the denominator equal to zero.

To find the values of "a" and "b," we need to solve the quadratic equation 2² - 9x + 18 = 0. This equation represents the denominator of the rational function. We can factorize the quadratic equation by using the quadratic formula or factoring techniques.

The quadratic formula states that for an equation in the form ax² + bx + c = 0, the solutions can be found using the formula: x = (-b ± √(b² - 4ac)) / (2a). In our case, a = 1, b = -9, and c = 18.

Substituting these values into the quadratic formula, we get x = (9 ± √((-9)² - 4(1)(18))) / (2(1)).

Simplifying further, we have x = (9 ± √(81 - 72)) / 2, which becomes x = (9 ± √9) / 2.

Taking the square root of 9 gives x = (9 ± 3) / 2, leading to two possible solutions: x = 6 and x = 3.

Therefore, the factored form of the denominator is 2² - 9x + 18 = (x - 6)(x - 3), where a = 6 and b = 3.

Learn more about quadratic equation here:

https://brainly.com/question/22364785

#SPJ11

the entry fee to a fun park is $20. each ride costs $2.50. jackson spent a total of $35 at the park. if x represents the number of rides jackson went on, which equation represents the situation?

Answers

Considering the definition of an equation, the equation that represent the situation is 20 + 2.50x= 35

Definition of equation

An equation is the equality existing between two algebraic expressions connected through the equals sign in which one or more unknown values, called unknowns, appear in addition to certain known data.

The members of an equation are each of the expressions that appear on both sides of the equal sign while the terms of an equation are the addends that form the members of an equation.

Equation in this case

Being "x" the number of rides Jackson went on, and knowing that:

The entry fee to a fun park is $20. Each ride costs $2.50. Jackson spent a total of $35 at the park.

the equation is:

20 + 2.50x= 35

Learn more about equations:

brainly.com/question/4983716

#SPJ1

(1 point) Evaluate the indefinite integral. Remember, there are no Product, Quotient, or Chain Rules for integration (Use symbolic notation and fractions where needed.) Sz(2 - 6) dx x^(x+1)/(x+1) +C

Answers

Let's first simplify the formula in order to calculate the indefinite integral:

∫(x^(x+1)/(x+1)) dx

The integral can be rewritten as follows:

[tex]∫(x^(x+1))/(x+1) dx[/tex]

We may now further simplify the integral by using a replacement. Let u = x + 1. The result is du = dx. We obtain dx = du after rearranging.

When these values are substituted, we get:

[tex](u)/(u) du = (x(x+1))/(x+1) dx[/tex]

We currently have an integral in its simplest form. Let's move on to the evaluation.

[tex]∫(u^u)/u du[/tex]

We must employ more sophisticated strategies, like the exponential integral or numerical approaches, to evaluate this integral. Unfortunately, these methods surpass what the present system is capable of.

As a result, it is impossible to describe the indefinite integral [tex](x(x+1))/(x+1) dx)[/tex] in terms of fundamental functions.

Learn more about indefinite integral here:

https://brainly.com/question/28036871

#SPJ11

Show that the solution of the initial value problem y(t) + y(t) = g(t), y(to) = 0, y'(to) = 0. is y(t) = sin sin(t - s)g(s)ds. to

Answers

The solution to the initial value problem is y(t) = ∫[to t] sin(t - s)g(s)ds.

What is the solution to the initial value problem y(t) + y(t) = g(t), y(to) = 0, y'(to) = 0?

To show that the solution of the initial value problem y(t) + y(t) = g(t), y(to) = 0, y'(to) = 0 is y(t) = ∫[to to] sin(t - s)g(s)ds, we can start by taking the derivative of y(t):

dy(t)/dt = d/dt[∫[to t] sin(t - s)g(s)ds]

Using the Leibniz rule for differentiating under the integral sign, we can write:

dy(t)/dt = sin(t - t)g(t) + ∫[to t] (∂/∂t)[sin(t - s)g(s)]ds

Simplifying further, we have:

dy(t)/dt = g(t) + ∫[to t] cos(t - s)g(s)ds

Now, integrating both sides with respect to t, we get:

y(t) = ∫[to t] g(s)ds + ∫[to t] ∫[to s] cos(t - s)g(s)dsdt

By applying integration by parts to the second integral, we can simplify it to:

y(t) = ∫[to t] g(s)ds + [sin(t - s)g(s)]|to t - ∫[to t] sin(t - s)g'(s)ds

Since y(to) = 0 and y'(to) = 0, we can substitute these initial conditions to find the solution:

0 = ∫[to to] g(s)ds - [sin(to - s)g(s)]|to to - ∫[to to] sin(to - s)g'(s)ds

Simplifying further, we obtain:

0 = ∫[to to] g(s)ds - 0 - 0

Therefore, the solution of the initial value problem is y(t) = ∫[to t] sin(t - s)g(s)ds.

Learn more about solution

brainly.com/question/1616939

#SPJ11




Step 2 Now we can say that the volume of the solid created by rotating the region under y = 2e-12 and above the x-axis between x = 0 and x = 1 around the y-axis is V= 2nrh dx - - 2πχ -x2 |2e dx. = 2

Answers

The volume of the solid created by rotating the region under [tex]y = 2e^{-12x}[/tex]and above the x-axis between x = 0 and x = 1 around the y-axis is [tex]V = \pi /3.[/tex]

What is the area of a centroid?

The area of a centroid refers to the region or shape for which the centroid is being calculated. The centroid is the geometric center or average position of all the points in that region.

The area of a centroid is typically denoted by the symbol A. It represents the total extent or size of the region for which the centroid is being determined.

Using the disk/washer method, the volume can be expressed as:

[tex]V =\int\limits^b_a \pi (R^2 - r^2) dx,[/tex]

where [a, b] represents the interval of integration (in this case, from 0 to 1), R is the outer radius, and r is the inner radius.

In this scenario, the region is rotated around the y-axis, so the radius is given by x, and the height is given by the function [tex]y = 2e^{-12x}.[/tex]Therefore, we have:

R = x, r = 0, (since the inner radius is at the y-axis)

Substituting these values into the formula, we get:

[tex]V = \int\limits^1_0\pi (x^2 - 0) dx \\V= \pi \int\limits^1_0 x^2 dx \\V= \pi [\frac{x^3}{3}]^1_0\\ V= \pi (\frac{1}{3} - 0) \\V= \frac{\pi }{3}[/tex]

Hence, the volume of the solid created by rotating the region under [tex]y = 2e^{-12x}[/tex] and above the x-axis between x = 0 and x = 1 around the y-axis is [tex]V=\frac{\pi }{3}[/tex]

Question:The volume of the solid created by rotating the region under

y = 2e^(-12x) and above the x-axis between x = 0 and x = 1 around the y-axis, we need to use the method of cylindrical shells or the disk/washer method.

To learn more about  the area of a centroid from the given link

brainly.com/question/32114452

#SPJ4

find a vector ( → u ) with magnitude 3 in the opposite direction as → v = ⟨ 4 , − 4 ⟩

Answers

the vector → u with magnitude 3 in the opposite direction as → v = ⟨ 4 , − 4 ⟩ is ⟨ -3/8 , 3/8 ⟩.

The magnitude of a vector is the length or size of the vector. In this case, we want to find a vector with magnitude 3, so we need to scale the vector → v to have a length of 3. Additionally, we want the resulting vector to be in the opposite direction as → v.

To achieve this, we can calculate the unit vector in the direction of → v by dividing → v by its magnitude:

→ u = → v / |→ v |

→ u = ⟨ 4/√(4^2+(-4)^2) , -4/√(4^2+(-4)^2) ⟩

→ u = ⟨ 4/√32 , -4/√32 ⟩

Next, we can scale → u to have a magnitude of 3 by multiplying it by -3/|→ v |:

→ u = -3/|→ v | * → u

→ u = -3/√32 * ⟨ 4/√32 , -4/√32 ⟩

→ u = ⟨ -34/32 , -3(-4)/32 ⟩

→ u = ⟨ -3/8 , 3/8 ⟩

Therefore, the vector → u with magnitude 3 in the opposite direction as → v = ⟨ 4 , − 4 ⟩ is ⟨ -3/8 , 3/8 ⟩.

Learn more about magnitude here:

https://brainly.com/question/28714281

#SPJ11

Determine whether the series is convergent or divergent. 1 1 1 1 1+ + + + + 252 353 44 55 ॥ 2' ਦੇਰ

Answers

The given series [tex]1+\frac{1}{\:2\sqrt[5]{2}}+\frac{1}{3\sqrt[5]{3}}+\frac{1}{4\sqrt[5]{4}}+\frac{1}{5\sqrt[5]{5}}+...[/tex] is divergent.

To determine whether the series is convergent or divergent, we can use the integral test. The integral test states that if the function f(x) is positive, continuous, and decreasing on the interval [1, ∞), and if the series Σ f(n) is given, then the series converges if and only if the integral ∫1^∞ f(x) dx converges.

In this case, we have the series Σ (1/n∛n) where n starts from 1. We can see that the function f(x) = 1/x∛x satisfies the conditions of the integral test. It is positive, continuous, and decreasing on the interval [1, ∞).

To apply the integral test, we calculate the integral ∫1^∞ (1/x∛x) dx. Using integration techniques, we find that the integral diverges. Since the integral diverges, by the integral test, the series Σ (1/n∛n) also diverges.

Therefore, the main answer is that the given series is divergent. The explanation provided the reasoning behind using the integral test, the application of the integral test to the given series, and the conclusion of the divergence of the series.

Learn more about series :

https://brainly.com/question/15415793

#SPJ11

Without using a calculator, simplify the following expression to a single trigonometric term: 6.1 sin 10° cos 440 + tan(360°-0), sin 20 6.2 Given: sin(60° +2x) + sin(60° - 2x) 6.2.1 (3)

Answers

We are given two expressions to simplify. In the first expression, 6.1 sin 10° cos 440 + tan(360°-0), we need to simplify it to a single trigonometric term. In the second expression, sin(60° + 2x) + sin(60° - 2x), we are asked to evaluate it. By using trigonometric identities and properties, we can simplify and evaluate these expressions.

6.1 sin 10° cos 440 + tan(360°-0):

Using the trigonometric identity tan(θ + π) = tan(θ), we can rewrite tan(360° - 0) as tan(0) = 0. Therefore, the expression simplifies to 6.1 sin 10° cos 440 + 0 = 6.1 sin 10° cos 440.

sin(60° + 2x) + sin(60° - 2x):

Using the angle sum identity for sine, sin(a + b) = sin(a)cos(b) + cos(a)sin(b), we can rewrite the expression as sin(60°)cos(2x) + cos(60°)sin(2x). Since sin(60°) = √3/2 and cos(60°) = 1/2, the expression simplifies to (√3/2)cos(2x) + (1/2)sin(2x).

Note: The given expression sin(60° + 2x) + sin(60° - 2x) cannot be further simplified to a single trigonometric term. However, we can rewrite it in terms of cosine using the identity sin(x) = cos(90° - x), which results in (√3/2)cos(90° - 2x) + (1/2)cos(90° + 2x).

To learn more about trigonometric: - brainly.com/question/29156330#SPJ11

Determine if and how the following planes intersect. If they intersect at a single point, determine the point of intersection. If they intersect along a single line, find the parametric equations of the line of intersection. Otherwise, just state the nature of the intersection. m: 3x-3y-2:-14=0 72: 5x+y-6:-10=0 #y: x-2y+42-9=0

Answers

These equations indicate that the planes do not intersect at a single point or along a single line. Instead, they have a common plane of intersection. The nature of the intersection is a plane.

The planes represented by the given equations intersect to form another plane rather than intersecting at a single point or along a single line.

To determine the intersection of the given planes, let's label them as follows:

Plane m: 3x - 3y - 2z - 14 = 0 (equation 1)

Plane 72: 5x + y - 6z - 10 = 0 (equation 2)

Plane #y: x - 2y + 42z - 9 = 0 (equation 3)

We can solve this system of equations to find the nature of their intersection.

First, let's find the intersection of Plane m (equation 1) and Plane 72 (equation 2):

To solve these two equations, we'll eliminate one variable at a time.

Multiplying equation 1 by 5 and equation 2 by 3 to get coefficients that will cancel out y when added:

15x - 15y - 10z - 70 = 0 (equation 1 multiplied by 5)

15x + 3y - 18z - 30 = 0 (equation 2 multiplied by 3)

Adding both equations:

30x - 28z - 100 = 0

Now, let's find the intersection of Plane #y (equation 3) with the result obtained:

Subtracting equation 3 from the above result:

30x - 28z - 100 - (x - 2y + 42z - 9) = 0

Simplifying:

29x - 70y - 70z - 91 = 0

Now we have a system of two equations:

30x - 28z - 100 = 0 (equation 4)

29x - 70y - 70z - 91 = 0 (equation 5)

To find the intersection of these two planes, we'll eliminate variables again.

Multiplying equation 4 by 29 and equation 5 by 30 to get coefficients that will cancel out x when subtracted:

870x - 812z - 2900 = 0 (equation 4 multiplied by 29)

870x - 2100y - 2100z - 2730 = 0 (equation 5 multiplied by 30)

Subtracting equation 4 from equation 5:

-2100y - 1296z + 830 = 0

The nature of the intersection is a plane.

To know more about intersection of planes refer to this link-

https://brainly.com/question/28192799#

#SPJ11

The growth of aninsect population is exponential. Ifthe populationdoubles every 12 hours, and 800 insects are countedat time t=0, after what length of time will the count reach 16,000?

Answers

The count will reach 16,000 after 24 hours.

Since the population doubles every 12 hours, we can express the population P as P(t) = P₀ * [tex]2^\frac{t}{12}[/tex] , where P₀ is the initial population count and t is the time in hours.

Given that the initial population count is 800 (P₀ = 800), we want to find the time t when the population count reaches 16,000. Setting P(t) = 16,000, we have:

16,000 = 800 *  [tex]2^\frac{t}{12}[/tex] .

To solve for t, we can divide both sides of the equation by 800 and take the logarithm base 2:

[tex]2^\frac{t}{12}[/tex]  = 16,000/800

[tex]2^\frac{t}{12}[/tex]  = 20

t/12 = log₂(20)

t = 12 * log₂(20).

Using a calculator to evaluate log₂(20), we find that t ≈ 24.

Therefore, it will take approximately 24 hours for the population count to reach 16,000.

To know more about logarithm click on below link:

https://brainly.com/question/30226560#

#SPJ11

i need help fast like fast

Answers

From the given data, the cost is proportional to the area.

From the given table,

cost ($)            Area (ft^2)

 500                    400

 750                    600

1000                   800

Here, rate = 400/500

= 0.8

Rate = 600/750

= 0.8

Rate = 800/1000

= 0.8

So, cost is proportional to area

Therefore, from the given data cost is proportional to area.

To learn more about the proportional relationship visit:

brainly.com/question/12917806.

#SPJ1

If a steady (constant) current, I, is flowing through a wire lying on the z-axis, experiments show that this current produces a magnetic field in the xy-plane given by: -y Hol B(x, y) = ²²² + 2π +

Answers

The given expression represents the magnetic field B(x, y) produced by a steady current flowing through a wire lying on the z-axis. The magnetic field is given by B(x, y) = -y * I / (2π * √(x² + y²)).

The magnetic field is directed in the xy-plane and depends on the coordinates (x, y) in a manner that is inversely proportional to the distance from the wire. Specifically, it decreases as the distance from the wire increases, following an inverse square law. The negative sign indicates that the magnetic field is directed in the opposite direction of the positive y-axis.

Learn more about magnetic field here;

https://brainly.com/question/19542022

#SPJ11

Explain the HOW and WHY of each step when solving the equation.
Use algebra to determine: x-axis symmetry, y-axis symmetry, and origin symmetry.
y = x9

Answers

To determine the x-axis symmetry, y-axis symmetry, and origin symmetry of the equation y = x^9, we need to analyze the properties of the equation and understand the concepts of symmetry.

The x-axis symmetry occurs when replacing y with -y in the equation leaves the equation unchanged. The y-axis symmetry happens when replacing x with -x in the equation keeps the equation the same.             X-axis symmetry: To determine if the equation has x-axis symmetry, we replace y with -y in the equation. In this case, (-y) = (-x^9). Simplifying further, we get y = -x^9. Since the equation has changed, it does not exhibit x-axis symmetry.

Y-axis symmetry: To check for y-axis symmetry, we replace x with -x in the equation. (-x)^9 = x^9. Since the equation remains the same, the equation has y-axis symmetry.

Origin symmetry: To determine origin symmetry, we replace x with -x and y with -y in the equation. The resulting equation is (-y) = (-x)^9. This equation is equivalent to the original equation y = x^9. Hence, the equation has origin symmetry.

In summary, the equation y = x^9 does not have x-axis symmetry but possesses y-axis symmetry and origin symmetry.

To learn more about origin symmetry click here : brainly.com/question/30104009

#SPJ11

Find the area of the surface generated by revolving the curve about the given axis. x = 3 cos(e), y = 3 sin(e), Oses. 71 2 y-axis

Answers

Evaluating this integral will give the area of the surface generated by revolving the curve about the y-axis.

To find the area of the surface generated by revolving the curve x = 3cos(e), y = 3sin(e) about the y-axis, we can use the formula for the surface area of revolution:

A = 2π ∫[a,b] f(x) √(1 + (f'(x))^2) dx

In this case, the curve is given parametrically, so we need to express the equation in terms of x. Using the trigonometric identity cos^2(e) + sin^2(e) = 1, we can rewrite the equations as:

x = 3cos(e) = 3(1 - sin^2(e)) = 3 - 3sin^2(e)

y = 3sin(e)

To find the bounds of integration [a, b], we need to determine the range of x values that correspond to one full revolution of the curve around the y-axis. Since the curve completes one revolution when e goes from 0 to 2π, we have a = 0 and b = 2π.

Now we can calculate the surface area:

A = 2π ∫[0,2π] (3 - 3sin^2(e)) √(1 + (d/dx(3 - 3sin^2(e)))^2) dx

= 2π ∫[0,2π] (3 - 3sin^2(e)) √(1 + (6sin(e)cos(e))^2) dx

Simplifying further,

A = 2π ∫[0,2π] (3 - 3sin^2(e)) √(1 + 36sin^2(e)cos^2(e)) dx

= 2π ∫[0,2π] (3 - 3sin^2(e)) √(1 + 36sin^2(e)(1 - sin^2(e))) dx

= 2π ∫[0,2π] (3 - 3sin^2(e)) √(1 + 36sin^2(e) - 36sin^4(e)) dx

Learn more about surface here:

https://brainly.com/question/32234399

#SPJ11

Find the interval(s) where the function is increasing and the interval(s) where it is decreasing. (Enter your answers using interval notation. If the answer cannot be expressed as an interval, enter EMPTY or ∅.)
a. f(x) = 1 − 6x b. f(x) = 1/3x3-4x2+16x+22 c. f(x) =( 7-x2)/x

Answers

To find the intervals of increasing and decreasing, we need to find the critical points by setting the derivative equal to zero and solving for x.

The derivative of f(x) with respect to x is f'(x) = x^2 - 8x + 16.Setting f'(x) equal to zero:x^2 - 8x + 16 = 0This equation can be factored as (x - 4)(x - 4) = So, x = 4 is the only critical point.To determine the intervals of increasing and decreasing, we can choose test points in each interval and evaluate the sign of the derivative.For x < 4, we can choose x = 0 as a test point. Evaluating f'(0) = (0)^2 - 8(0) + 16 = 16, which is positive.For x > 4, we can choose x = 5 as a test point. Evaluating f'(5) = (5)^2 - 8(5) + 16 = 9, which is positive.Therefore, the function is increasing on the intervals (-∞, 4) and (4, +∞).c.For the function f(x) = (7 - x^2)/x

To find the intervals of increasing and decreasing, we need to analyze the sign of the derivative.The derivative of f(x) with respect to x is f'(x) = (x^2 - 7)/x^2.To determine where the derivative is undefined or zero, we set the numerator equal to zero

x^2 - 7 = 0Solving for x, we have x = ±√7.

The derivative is undefined at x = 0.To analyze the sign of the derivative, we can choose test points in each interval and evaluate the sign of f'(x).For x < -√7, we can choose x = -10 as a test point. Evaluating f'(-10) = (-10)^2 - 7 / (-10)^2 = 1 - 7/100 = -0.93, which is negative

For -√7 < x < 0, we can choose x = -1 as a test point. Evaluating f'(-1) = (-1)^2 - 7 / (-1)^2 = -6, which is negative.For 0 < x < √7, we can choose x = 1 as a test point. Evaluating f'(1) = (1)^2 - 7 / (1)^2 = -6, which is negative

For x > √7, we can choose x = 10 as a test point. Evaluating f'(10) = (10)^2 - 7 / (10)^2 = 0.93, which is positive.Therefore, the function is decreasing on the intervals (-∞, -√7), (-√7, 0), and (0, +∞).

To learn more about   intervals  click on the link below:

brainly.com/question/32539312

#SPJ11

Other Questions
Every autonomous differential equation is itself a separable differential equation.True or False what is vapor pressure of 6.22 m mgcl2 aqueous solution at 25 ? vapor pressure of pure water at 25c is 23.76 mm hg. psolvent please help asapQuestion 9 1 pts If $20,000 is invested in a savings account offering 3.5% per year, compounded semiannually, how fast is the balance growing after 5 years? Round answer to 2-decimal places. Melody Corp has an expected ROE of 14%. The dividend growth rate will be ____ if the firm follows a policy of paying 60% of earnings in the form of dividends. Bacteria living in salt marshes are most likely which of the following?A.acidophilesB.barophilesC.halotolerantD.thermophiles please use only calc 2 techniques and show work thankuFind the equation of the line tangent to 2ey = x + y at the point (2, 0). Write the equation in slope-intercept form, y=mx+b. Do not use the equation editor to answer. Write fractions in the form a/b. searches of vehicles incident to the arrest of an occupant are allowed, only if the officer has a reasonable belief that the arrestee can gain access to the vehicle or that will be found in the vehicle. (\iiint_{E}^{} x^2e^y dV) Evaluate the triple integral where Eis bounded by the parabolic cylinder z=1y2 and the planes z=0,x=1,and x=1. using orders sheet in sample-superstore, create a scatter plot with sales and profit for year 2012. identify which customer segment and region is facing losses. select the correct option. group of answer choices a) south. b) home office and small business central. c) furniture west, home office and small business west. d) furniture this excerpt demonstrates: play play discover music player play stop mute max volume 01:4705:21 audio selection select one: mainly consonant harmonies disrupted by dissonance at the beginning of the passage how dissonant harmonies create tension and instability throughout consonant harmonies that give a feeling of stability throughout dissonant harmonies at the end of the passage How does perspective shape truth about zeke in the book blizzards wake. Hitter Corporation produces baseball bats for kids that it sells for $36 each. At capacity, the company can produce 56,000 bats a year. The costs of producing and selling 56,000 bats are as follows: (Click to view the costs.) Read the requirements. - Requirement 1. Suppose Hitter is currently producing and selling 42,000 bats. At this level of production and sales, its fixed costs are the same as given in the preceding table. Mantle Corporation wants to place a one-time special order for 14,000 bats at $21 each. Hitter will incur no variable selling costs for this special order. Should Hitter accept this one-time special order? Show your calculations. Determine the effect on operating income if the order is accepted. (Enter decreases in operating income with parentheses or a minus sign.) Increase (decrease) in operating income if order is accepted Hitter should Mantle's special order because it operating income by $ Consider the function f(x,y)= 3x4-4xy + y2 +7 and the point P(-1,1). a. Find the unit vectors that give the direction of steepest ascent and steepest descent at P.. b. Find a vector that points in a direction of no change in the function at P. THE a. What is the unit vector in the direction of steepest ascent at P? 50 Points! Multiple choice geometry question. Photo attached. Thank you! Find the derivative of the function f(x) = sinx + cosx in unsimplified form. b) Simplify the derivative you found in part a) and explain why f(x) is a constant function, a function of the form f(x) = c for some c E R. In a reaction, the oxidation state of carbon changes from -4 to +3. In this reaction, the carbon atom... loses 7 electrons and is oxidized. gains 7 electrons and is reduced. loses 7 electrons and is reduced. gains 7 electrons and is oxidized. gains 1 electron and is reduced. how did microbiologists know that viruses existed before the 1930s what is the significance of india's central location? PLEASE HELP ME ANSWER QUESTIONS 7, 8, 9 AND 10. I REALLY, REALLY NEED THEM We have the following. 56 - (A + B)x + (A + B) We must now determine the values of A and B. There is no x term on the left side of the equation, which tells us that the coefficient for the x-term on the right side of the equation must equal 0. A +8B = 0 Setting the constant on the left side of the equation equal to the constant on the right side of the equation gives us the following. _______ = A+B Subtracting the second equation from the first allows us to determine B. B = ______Substituting this value of B into either of the equations allows us to solve for A. A= _______