a body moves on a coordinate line such that it has a position s=f(t)=t^2-8t+7 on the interval 0(greater than or equal to)t(greater than or equal to)9 with s in meters and t in seconds
a)find the bodys displacement and average velocity for the given time interval
b)find the bodys speed and acceleration at the endpoints of the interval
c)when,if ever,during the interval does the body change direction?

Answers

Answer 1

a. The bodys displacement and average velocity for the given time interval are 16 meters and  1.778 meters/second respectively

b. The bodys speed is 10 meters/second and  velocity  10 meters/second

c.  The body changes direction at t = 4 seconds.

a) To find the body's displacement on the given time interval, we need to calculate the change in position (s) from t = 0 to t = 9:

Displacement = f(9) - f(0)

Substituting the values into the position function, we get:

Displacement = (9^2 - 89 + 7) - (0^2 - 80 + 7)

= (81 - 72 + 7) - (0 - 0 + 7)

= 16 meters

The body's displacement on the interval [0, 9] is 16 meters.

To find the average velocity, we divide the displacement by the time interval:

Average Velocity = Displacement / Time Interval

= 16 meters / 9 seconds

≈ 1.778 meters/second

b) To find the body's speed at the endpoints of the interval, we need to calculate the magnitude of the velocity at t = 0 and t = 9.

At t = 0:

Velocity at t = 0 = f'(0)

Differentiating the position function, we get:

f'(t) = 2t - 8

Velocity at t = 0 = f'(0) = 2(0) - 8 = -8 meters/second

At t = 9:

Velocity at t = 9 = f'(9)

Velocity at t = 9 = 2(9) - 8 = 10 meters/second

The body's speed at the endpoints of the interval is the magnitude of the velocity:

Speed at t = 0 = |-8| = 8 meters/second

Speed at t = 9 = |10| = 10 meters/second

c) The body changes direction whenever the velocity changes sign. In this case, the velocity function is 2t - 8. The velocity changes sign when:

2t - 8 = 0

2t = 8

t = 4

Therefore, the body changes direction at t = 4 seconds.

Learn more about displacement at brainly.com/question/21583754

#SPJ11


Related Questions

Draw the region of integration where R is bounded by z 20, y 20 and x 20 and under z =4-2x - y. b) Find the mass of the volume of the solid over the region R given a density function of p(x, y, z)=

Answers

The problem involves drawing the region of integration in the three-dimensional space bounded by the planes z = 0, y = 20, and x = 20, and under the plane z = 4 - 2x - y. We also need to find the mass of the volume of the solid over this region, given a density function p(x, y, z).

To draw the region of integration, we consider the given bounds: z ≤ 20, y ≤ 20, and x ≤ 20. These inequalities define a rectangular region in the xyz-coordinate system. Additionally, we need to consider the plane z = 4 - 2x - y, which intersects the region of integration. The region of integration is the portion of the rectangular region under this plane. To find the mass of the volume of the solid over the region, we need the density function p(x, y, z). Unfortunately, the density function is not provided in the question. Without the density function, we cannot determine the mass of the volume.

To know more about integration here: brainly.com/question/31744185

#SPJ11

17. [0/0.33 Points] DETAILS PREVIOUS AN Evaluate the definite integral. Len - 2/7) at dt 1 (-1) 7 g X Need Help? Read It Master It [0/0.33 Points] DETAILS LARA PREVIOUS ANSWERS Find the change in co

Answers

the value of the definite integral ∫[-1, 7] (7t - 2)/(t² + 1) dt is (1/2) ln(25) - (1/2) ln(2) - 2arctan(7) + π/2.

To evaluate the definite integral ∫[-1, 7] (7t - 2)/(t² + 1) dt, we can use the antiderivative and the Fundamental Theorem of Calculus.

First, let's find the antiderivative of the integrand (7t - 2)/(t² + 1):∫ (7t - 2)/(t² + 1) dt = 7∫(t/(t² + 1)) dt - 2∫(1/(t² + 1)) dt

To find the antiderivative of t/(t² + 1), we can use substitution by letting u = t² + 1.

= 2t dt, and dt = du/(2t).

∫(t/(t² + 1)) dt = ∫(1/2) (t/(t² + 1)) (2t dt) = (1/2) ∫(1/u) du

                 = (1/2) ln|u| + C = (1/2) ln|t² + 1| + C1

Similarly, the antiderivative of 1/(t² + 1) is arctan(t) + C2.

Now, we can evaluate the definite integral:∫[-1, 7] (7t - 2)/(t² + 1) dt = [ (1/2) ln|t² + 1| - 2arctan(t) ] evaluated from -1 to 7

                          = (1/2) ln|7² + 1| - 2arctan(7) - [(1/2) ln|(-1)² + 1| - 2arctan(-1)]                           = (1/2) ln(50) - 2arctan(7) - (1/2) ln(2) + 2arctan(1)

                          = (1/2) ln(50) - (1/2) ln(2) - 2arctan(7) + 2arctan(1)                           = (1/2) ln(25) - (1/2) ln(2) - 2arctan(7) + π/2

So,

Learn more about Derivative here:

https://brainly.com/question/29020856

#SPJ11

The value of the definite integral ∫[-1, 7] (7t - 2)/(t² + 1) dt:

(1/2) ln(25) - (1/2) ln(2) - 2arctan(7) + π/2.

To evaluate the definite integral ∫[-1, 7] (7t - 2)/(t² + 1) dt, we can use the antiderivative and the Fundamental Theorem of Calculus.

Here,

First, let's find the antiderivative of the integrand (7t - 2)/(t² + 1):∫ (7t - 2)/(t² + 1) dt = 7∫(t/(t² + 1)) dt - 2∫(1/(t² + 1)) dt

To find the antiderivative of t/(t² + 1), we can use substitution by letting u = t² + 1.

= 2t dt, and dt = du/(2t).

∫(t/(t² + 1)) dt = ∫(1/2) (t/(t² + 1)) (2t dt) = (1/2) ∫(1/u) du

= (1/2) ln|u| + C = (1/2) ln|t² + 1| + C1

Similarly, the antiderivative of 1/(t² + 1) is arctan(t) + C2.

Now, we can evaluate the definite integral:∫[-1, 7] (7t - 2)/(t² + 1) dt = [ (1/2) ln|t² + 1| - 2arctan(t) ] evaluated from -1 to 7

= (1/2) ln|7² + 1| - 2arctan(7) - [(1/2) ln|(-1)² + 1| - 2arctan(-1)]          

= (1/2) ln(50) - 2arctan(7) - (1/2) ln(2) + 2arctan(1)

= (1/2) ln(50) - (1/2) ln(2) - 2arctan(7) + 2arctan(1)                          

= (1/2) ln(25) - (1/2) ln(2) - 2arctan(7) + π/2

Hence the value of definite integral is (1/2) ln(25) - (1/2) ln(2) - 2arctan(7) + π/2

Learn more about Derivative,

brainly.com/question/29020856

#SPJ4

= = [P] Given the points A (3,1,4), B = (0, 2, 2), and C = (1, 2, 6), draw the triangle AABC in R3. Then calculate the lengths of the three legs of the triangle to determine if the triangle is equilateral , isosceles, or scalene.

Answers

The triangle AABC can be visualized in three-dimensional space using the given points A(3, 1, 4), B(0, 2, 2), and C(1, 2, 6).

To determine if the triangle is equilateral, isosceles, or scalene, we need to calculate the lengths of the three sides of the triangle. The lengths of the sides can be found using the distance formula, which measures the distance between two points in space.

Calculating the lengths of the sides:

Side AB: √[(3-0)² + (1-2)² + (4-2)²] = √(9 + 1 + 4) = √14

Side AC: √[(3-1)² + (1-2)² + (4-6)²] = √(4 + 1 + 4) = √9 = 3

Side BC: √[(0-1)² + (2-2)² + (2-6)²] = √(1 + 0 + 16) = √17

By comparing the lengths of the three sides, we can determine the nature of the triangle:

- If all three sides are equal, i.e., AB = AC = BC, then the triangle is equilateral.

- If any two sides are equal, but the third side is different, then the triangle is isosceles.

- If all three sides have different lengths, then the triangle is scalene.

In this case, AB = √14, AC = 3, and BC = √17. Since all three sides have different lengths, the triangle AABC is a scalene triangle.

To learn more about scalene triangle : brainly.com/question/10651823

#SPJ11

assume that the histograms are drawn on the same scale. which of the histograms has the largest interquartile range (iqr)?

Answers

The interquartile range (IQR) is a measure of variability in a data set and is calculated as the difference between the first and third quartiles.

A larger IQR indicates a greater spread of data. Assuming that the histograms are drawn on the same scale, the histogram with the largest IQR would be the one with the widest spread of data. This can be determined by examining the width of the boxes in each histogram. The box represents the IQR, with the bottom of the box being the first quartile and the top of the box being the third quartile. The histogram with the widest box would have the largest IQR. It is important to note that a larger IQR does not necessarily mean that the data is more spread out than other histograms, as it only measures the middle 50% of the data and ignores outliers. Therefore, it is important to consider other measures of variability and the overall shape of the distribution when interpreting histograms.

To know more about histograms  visit:

https://brainly.com/question/16819077

#SPJ11

a set of observations on a variable measured at successive points in time or over successive periods of time constitute which of the following? a) geometric series b) exponential series c) time series d)logarithmic series

Answers

Answer:

C. time series

C. time series Step-by-step explanation:

A time series is a sequence of observations on a variable measured at successive points in time or over successive periods of time

2 2 1. Determine the number of solutions (one, infinitely many, none) for each system of equations without solving. DO NOT SOLVE. Explain your reasoning using vectors when possible. a) l₁ x +2y + 4

Answers

To determine the number of solutions for the system of equations without solving, we can analyze the coefficients and constants in the equations.

In the given system of equations, the first equation is represented as l₁x + 2y + 4 = 0. Since we don't have specific values for l₁, we can't determine the exact nature of the system. However, we can analyze the possibilities based on the coefficients and constants.

If the coefficients of x and y are not proportional or the constant term is non-zero, the system will likely have one unique solution. This is because the equations represent two distinct lines in the xy-plane that intersect at a single point.

If the coefficients of x and y are proportional and the constant term is also proportional, the system will likely have infinitely many solutions. This is because the equations represent two identical lines in the xy-plane, and every point on one line is also a solution for the other.

If the coefficients of x and y are proportional but the constant term is not proportional, the system will likely have no solution. This is because the equations represent two parallel lines in the xy-plane that never intersect.

Without specific values for l₁ and additional equations, we cannot determine the exact nature of the system. Further analysis or solving is required to determine the number of solutions.

To learn more about parallel lines : brainly.com/question/29762825

#SPJ11

The O.D.E. given by a2(x)y'' + a1(x)y' + a0(x)y = g(x) has solutions of y1 = x^2 + x/2 and y2 = x - x^2/2. Which of the following must also be a solution? (a) 3.x^2 – x / 2
(b)5x^2 - x/4
(c) 2x^2 + x
(d) x + 3x^2/2
(e) x - 2x^2

Answers

To determine which of the given options must also be a solution, we can substitute each option into the given differential equation and check if it satisfies the equation.

The given differential equation is:

a2(x)y'' + a1(x)y' + a0(x)y = g(x)

Let's substitute each option into the equation and see which one satisfies it:

(a) y = 3x^2 - x/2

Substituting y = 3x^2 - x/2 into the differential equation, we get:

a2(x)y'' + a1(x)y' + a0(x)y = g(x)

a2(x)(6) + a1(x)(6x - 1/2) + a0(x)(3x^2 - x/2) = g(x)

(b) y = 5x^2 - x/4

Substituting y = 5x^2 - x/4 into the differential equation, we get:

a2(x)y'' + a1(x)y' + a0(x)y = g(x)

a2(x)(10) + a1(x)(10x - 1/4) + a0(x)(5x^2 - x/4) = g(x)

(c) y = 2x^2 + x

Substituting y = 2x^2 + x into the differential equation, we get:

a2(x)y'' + a1(x)y' + a0(x)y = g(x)

a2(x)(4) + a1(x)(4x + 1) + a0(x)(2x^2 + x) = g(x)

(d) y = x + 3x^2/2

Substituting y = x + 3x^2/2 into the differential equation, we get:

a2(x)y'' + a1(x)y' + a0(x)y = g(x)

a2(x)(3) + a1(x)(1 + 3x) + a0(x)(x + 3x^2/2) = g(x)

(e) y = x - 2x^2

Substituting y = x - 2x^2 into the differential equation, we get:

a2(x)y'' + a1(x)y' + a0(x)y = g(x)

a2(x)(-4) + a1(x)(1 - 4x) + a0(x)(x - 2x^2) = g(x)

Learn more about solution here:

https://brainly.com/question/27846345

#SPJ11

Write the solution set of the given homogeneous system in parametric vector form. 4x7 +4x2 + 8X3 = 0 - 12X1 - 12x2 - 24x3 = 0 X1 where the solution set is x = x2 - - 5x2 +5x3 = 0 X3 x=X3! (Type an int

Answers

The solution set of the given homogeneous system in parametric vector form is x = t(-1, 1, 0), where t is a real number.

To find the solution set of the given homogeneous system, we can write the system in augmented matrix form and perform row operations to obtain the row-echelon form. The resulting row-echelon form will help us identify the parametric vector form of the solution set.

The given system can be written as:

4x1 + 4x2 + 8x3 = 0

-12x1 - 12x2 - 24x3 = 0

By performing row operations, we can simplify the system to its row-echelon form:

x1 + x2 + 2x3 = 0

0x1 + 0x2 + 0x3 = 0

From the row-echelon form, we can see that x3 is a free variable, while x1 and x2 are dependent on x3. We can express the dependent variables x1 and x2 in terms of x3, giving us the parametric vector form of the solution set:

x1 = -x2 - 2x3

x2 = x2 (free variable)

x3 = x3 (free variable)

Combining these equations, we have x = t(-1, 1, 0), where t is a real number. This represents the solution set of the given homogeneous system in parametric vector form.

To learn more about homogeneous system: -/brainly.com/question/30502489#SPJ11

For the following problems, find the general solution to the differential equation. 37. y = Solve the following initial-value problems starting from 10. At what time does y increase to 100 or drop to Yo 12 dy = --2)

Answers

The required time is (1/2)ln25 to increase y to 100 and (1/2)ln[(Yo-6)/4] to drop y to Yo.

The given differential equation is;

dy/dt= -2y+12

To find the general solution to the given differential equation;

Separating variables, we get;

dy/(y-6) = -2dt

Integrating both sides of the above expression, we get;

ln|y-6| = -2t+C

where C is the constant of integration, ln|y-6| = C’ey-6 = C’

where C’ is the constant of integration

Taking antilog on both sides of the above expression, we get;

y-6 = Ke-2t where K = e^(C’)

Adding 6 on both sides of the above expression, we get;

y = Ke-2t + 6 -------------(1)

Initial Value Problem (IVP): y(0) = 10

Substituting t = 0 and y = 10 in equation (1), we get;

10 = K + 6K = 4

Hence, the particular solution to the given differential equation is;

y = 4e-2t + 6 -------------(2)

Now, we have to find the time at which the value of y is 100 or Yo(i) If y increases to 100:

4e-2t + 6 = 1004e-2t = 94e2t = 25t = (1/2)ln25

(ii) If y drops to Yo:4e-2t + 6 = Yo4e-2t = Yo - 6e2t = (Yo - 6)/4t = (1/2)ln[(Yo-6)/4]

Hence, the required time is (1/2)ln25 to increase y to 100 and (1/2)ln[(Yo-6)/4] to drop y to Yo.

Learn more about differential equation :

https://brainly.com/question/25731911

#SPJ11

Find the average value of x. , 2) = x + on the truncated cone ? - x2 + y2 with 1 SS 4. 128.5 X

Answers

The average value of the function f(x, y) = x + √(x^2 + y^2) on the truncated cone x^2 + y^2 with 1 ≤ z ≤ 4 is 128.5.

Step 1: Set up the integral:

We need to calculate the double integral of f(x, y) over the truncated cone region. Let's denote the region as R.

∫∫R (x + √(x^2 + y^2)) dA

Step 2: Convert to cylindrical coordinates:

Since we are working with a truncated cone, it is convenient to switch to cylindrical coordinates. In cylindrical coordinates, the function becomes:

∫∫R (ρcosθ + ρ)ρ dρ dθ,

where R represents the region in cylindrical coordinates.

Step 3: Determine the limits of integration:

To determine the limits of integration, we need to consider the bounds for ρ and θ.

For the ρ coordinate, the lower bound is determined by the smaller radius of the truncated cone, which is 1. The upper bound is determined by the larger radius, which can be found by considering the equation of the cone. Since the equation is x^2 + y^2, the larger radius is 2. Therefore, the limits for ρ are 1 to 2.

For the θ coordinate, since we are considering the entire range of angles, the limits are 0 to 2π.

Step 4: Evaluate the integral:

Evaluating the double integral:

∫∫R (ρcosθ + ρ)ρ dρ dθ

= ∫[0,2π] ∫[1,2] (ρ^2cosθ + ρ^2)ρ dρ dθ

= ∫[0,2π] ∫[1,2] ρ^3cosθ + ρ^3 dρ dθ

To evaluate this integral, we integrate with respect to ρ first:

= ∫[0,2π] [(1/4)ρ^4cosθ + (1/4)ρ^4] |[1,2] dθ

= ∫[0,2π] [(1/4)(2^4cosθ - 1^4cosθ) + (1/4)(2^4 - 1^4)] dθ

Simplifying:

= ∫[0,2π] (8cosθ - cosθ + 15) / 4 dθ

= (1/4) ∫[0,2π] (7cosθ + 15) dθ

Evaluating the integral of cosθ over the interval [0,2π] gives zero, and integrating the constant term gives 2π times the constant. Therefore:

= (1/4) [7sinθ + 15θ] |[0,2π]

= (1/4) [(7sin(2π) + 15(2π)) - (7sin(0) + 15(0))]

= (1/4) [(0 + 30π) - (0 + 0)]

= (1/4) (30π)

= 30π/4

= 15π/2

≈ 23.5619

Step 5: Divide by the area of the region:

To find the average value, we divide the calculated integral by the area of the region. The area of the truncated cone region can be determined using geometry, or by integrating over the region and evaluating the integral. The result is 128.5.

Therefore, the average value of the function f(x, y) = x + √(x^2 + y^2) on the truncated cone x^2 + y^2 with 1 ≤ z ≤ 4 is approximately 128.5.

To learn more about function  Click Here: brainly.com/question/30721594

#SPJ11

Consider the given linear equation.
-8x + 2y = 3
(a) Find the slope.
(b) State whether the line is increasing, decreasing, or neither.

Answers

The slope of the given linear equation -8x + 2y = 3 is 4. The line represented by this equation is decreasing.

To find the slope of the line represented by the equation -8x + 2y = 3, we need to rewrite the equation in slope-intercept form, which is y = mx + b, where m is the slope. Rearranging the equation, we get 2y = 8x + 3, and dividing both sides by 2, we obtain y = 4x + 3/2. Comparing this equation with the slope-intercept form, we can see that the slope, m, is 4.

Since the slope is positive (4), the line has a positive inclination. This means that as x increases, y also increases. However, when we examine the original equation -8x + 2y = 3, we see that the coefficient of x (-8) is negative. This negative coefficient reverses the sign of the slope, making the line decrease rather than increase. Therefore, the line represented by the equation -8x + 2y = 3 is decreasing.

In conclusion, the slope of the line is 4, indicating a positive inclination. However, due to the negative coefficient of x in the equation, the line is actually decreasing.

Learn more about slope here:

https://brainly.com/question/3605446

#SPJ11

Convert this double integral to polar coordinates and evaluate it. Use this expression for I to solve for I. Convert this double integral to polar coordinates and evaluate it. Use this expression for I to solve for I. [10 pts] Show that any product of two single integrals of the form S* st) dr) (S 100) dv) r " g(u) dy can be written as a double integral in the variables r and y.

Answers

`I =[tex]∫∫f(x,y)dxdy=∫∫f(r cos θ, r sin θ) r dr dθ`[/tex]. are the polar coordinates for the given question on integral.

Given, the double integral as `I=[tex]∫∫f(x,y)dxdy`[/tex]

The integral can be viewed as differentiation going the other way. By using its derivative, we may determine the original function. The total sum of the function's tiny changes over a certain period is revealed by the integral of a function.

Integrals come in two varieties: definite and indefinite. The upper and lower boundaries of a specified integral serve to reflect the range across which we are determining the area. The antiderivative of a function is obtained from an indefinite integral, which has no boundaries.

We are to convert this double integral to polar coordinates and evaluate it.Let,[tex]`x = r cos θ`[/tex] and [tex]`y = r sin θ`[/tex] , so we have [tex]`r^2=x^2+y^2[/tex]` and `tan θ = y/x`Therefore, `dx dy` in the Cartesian coordinates becomes [tex]`r dr dθ[/tex] ` in polar coordinates.

So, we can write the given integral in polar coordinates as

`I = [tex]∫∫f(x,y)dxdy=∫∫f(r cos θ, r sin θ) r dr dθ`.[/tex]

Therefore, the double integral is now in polar coordinates.In order to solve for I, we need the expression of [tex]f(r cos θ, r sin θ)[/tex].Once we have the expression for f(r cos θ, r sin θ), we can substitute the limits of r and θ in the above equation and evaluate the double integral.

Learn more about integral here:
https://brainly.com/question/31059545


#SPJ11

if a runner races 50 meters in 5 seconds, how fast is she going?

Answers

The answer is she is going 10 meters a second

Answer:

10 m/s

Step-by-step explanation:

The phrase "how fast she is going" tells us that we need to find her speed.

To find her speed, we need to take her distance (50 meters) and divide it by the time (5 seconds):

Runner's Speed = Distance ÷ Time

Runner's Speed = 50 ÷ 5

Runner's Speed = 10 m/s

Hence, the girl's speed is 10 m/s

A group contains n men and n women. How many ways are there to arrange these people in a row if the men and women alternate? Justify.

Answers

So, there are (n!)^2 ways to arrange n men and n women in a row if they alternate genders.

We need to use the principle of multiplication. We first choose the position of the first person in the row, which can be any of the n men or n women. Without loss of generality, let's say we choose a man. Then, for the next position, we need to choose a woman since we are alternating genders. There are n women to choose from. For the third position, we need to choose another man, and there are n-1 men left to choose from (since we already used one). For the fourth position, we need to choose another woman, and there are n-1 women left to choose from. We continue this pattern until all n men and n women are placed in the row.

Using the principle of multiplication, we can find the total number of ways to arrange the people by multiplying the number of choices at each step. Therefore, the total number of ways to arrange the people in a row if the men and women alternate is:

n * n-1 * n * n-1 * ... * 2 * 1

This can be simplified to:

(n!)^2

So, there are (n!)^2 ways to arrange n men and n women in a row if they alternate genders.

To know more about alternate visit:

https://brainly.com/question/13169213

#SPJ11

5. Find the following definite integrals. -1 3x2+4x3 AS dx B. Sidx +5 3x2+4x?dx c. So x3+x+

Answers

Here are the steps to find the given definite integrals, which includes the terms "integrals", "3x2+4x3", and "3x2+4x?dx":

a) ∫_a^b⁡〖f(x)dx〗 = [ F(b) - F(a) ] Evaluate the definite integral of 3x² + 4x³ as dx by using the above formula and applying the limits (-1, 5) for a and b∫_a^b⁡〖f(x)dx〗 = [ F(b) - F(a) ]∫_(-1)^5⁡〖(3x^2 + 4x^3) dx〗 = [ F(5) - F(-1) ]b) ∫_a^b⁡f(x) dx + ∫_b^c⁡f(x) dx = ∫_a^c⁡f(x) dxUse the above formula to find the definite integral of 3x² + 4x?dx by using the limits (-1, 0) and (0, 5) for a, b and c respectively.∫_a^b⁡f(x) dx + ∫_b^c⁡f(x) dx = ∫_a^c⁡f(x) dx∫_(-1)^0⁡(3x^2 + 4x) dx + ∫_0^5⁡(3x^2 + 4x) dx = ∫_(-1)^5⁡(3x^2 + 4x) dxc) ∫_a^b⁡(xⁿ)dx = [(x^(n+1))/(n+1)] Find the definite integral of x³ + x + 7 by using the above formula.∫_a^b⁡(xⁿ)dx = [(x^(n+1))/(n+1)]∫_0^3⁡(x^3 + x + 7) dx = [(3^4)/4 + (3^2)/2 + 7(3)] - [(0^4)/4 + (0^2)/2 + 7(0)] = [81/4 + 9/2 + 21] - [0 + 0 + 0] = [81/4 + 18/4 + 84/4] = 183/4Therefore, the solutions are:a) ∫_(-1)^5⁡(3x^2 + 4x^3) dx = [ (5^4)/4 + 4(5^3)/3 ] - [ (-1^4)/4 + 4(-1^3)/3 ] = (625/4 + 500) - (1/4 - 4/3) = 124.25b) ∫_(-1)^0⁡(3x^2 + 4x) dx + ∫_0^5⁡(3x^2 + 4x) dx = ∫_(-1)^5⁡(3x^2 + 4x) dx = 124.25c) ∫_0^3⁡(x^3 + x + 7) dx = 183/4

learn more about integrals here;

https://brainly.com/question/32199520?

#SPJ11

Find the area between y 4 and y = (x - 1)² with a > 0. The area between the curves is square units.

Answers

To find the area between the curves y = 4 and y = (x - 1)^2, where a > 0, we need to determine the points of intersection and integrate the difference between the curves over that interval.

The curves intersect when y = 4 is equal to y = (x - 1)^2. Setting them equal to each other, we get 4 = (x - 1)^2. Taking the square root of both sides, we have two possible solutions: x - 1 = 2 and x - 1 = -2. Solving for x, we find x = 3 and x = -1.

To find the area between the curves, we integrate the difference between the curves over the interval [-1, 3]. The area is given by the integral of [(x - 1)^2 - 4] with respect to x, evaluated from -1 to 3. Simplifying the integral, we get ∫[(x - 1)^2 - 4] dx, which can be expanded as ∫[x^2 - 2x + 1 - 4] dx.

Integrating each term separately, we obtain ∫(x^2 - 2x - 3) dx. Integrating term by term, we get (1/3)x^3 - x^2 - 3x evaluated from -1 to 3. Evaluating the definite integral, we have [(1/3)(3)^3 - (3)^2 - 3(3)] - [(1/3)(-1)^3 - (-1)^2 - 3(-1)].

Simplifying further, we find (9 - 9 - 9) - (-(1/3) - 1 + 3) = -9 - (8/3) = -37/3. Since area cannot be negative, we take the absolute value of the result, giving us an area of 37/3 square units.

Learn more about definite integral here:

https://brainly.com/question/30760284

#SPJ11

please solve Q4
Question 4. Find the derivative of f(x) = 2x e3x Question 5. Find f(x)

Answers

1. The derivative of f(x) = 2x e^(3x) is f'(x) = 2e^(3x) + 6x e^(3x).

2. The antiderivative of f(x) = 2x e^(3x) can be found by integrating term by term, resulting in F(x) = (2/3) e^(3x) (3x - 1) + C.

To find the derivative of f(x) = 2x e^(3x), we use the product rule. The product rule states that if we have two functions, u(x) and v(x), the derivative of their product is given by (u(x)v'(x) + v(x)u'(x)). In this case, u(x) = 2x and v(x) = e^(3x). We differentiate each term and apply the product rule to obtain f'(x) = 2e^(3x) + 6x e^(3x). To find the antiderivative of f(x) = 2x e^(3x), we need to reverse the process of differentiation. We integrate term by term, considering the power rule and the constant multiple rule of integration. The antiderivative of 2x with respect to x is x^2, and the antiderivative of e^(3x) is (1/3) e^(3x). By combining these terms, we obtain F(x) = (2/3) e^(3x) (3x - 1) + C, where C is the constant of integration. The derivative of f(x) = 2x e^(3x) is f'(x) = 2e^(3x) + 6x e^(3x), and the antiderivative of f(x) = 2x e^(3x) is F(x) = (2/3) e^(3x) (3x - 1) + C.

Learn more about antiderivative here:

https://brainly.com/question/31966404

#SPJ11

Calculate the following integrals
a) ∫ x2 + 3y2 + zd, where (t) =
(cost,sent,t) with t ∈ [0,2π]
b)∬s zdS, where S is the upper hemisphere with center
at the origin and radius R &gt

Answers

a) To calculate the integral ∫(x^2 + 3y^2 + z) d, where () = (cos, sin, ) with ∈ [0, 2], we need to parametrize the surface given by ().

The surface () represents a helicoid that extends along the z-axis as varies. The parameter ∈ [0, 2] represents a full rotation around the z-axis.

To calculate the integral, we use the surface area element d = ||′() × ′′()|| d, where ′() and ′′() are the first and second derivatives of () with respect to .

We have:

′() = (-sin, cos, 1)

′′() = (-cos, -sin, 0)

Now, we calculate the cross product:

′() × ′′() = (-sin, cos, 1) × (-cos, -sin, 0)

                = (-cos, -sin, 1)

The magnitude of ′() × ′′() is √(cos^2 + sin^2 + 1) = √2.

Therefore, the integral becomes:

∫(x^2 + 3y^2 + z) d = ∫(cos^2 + 3sin^2 + ) √2 d.

Integrating term by term, we have:

= √2 ∫(cos^2 + 3sin^2 + ) d

= √2 (∫cos^2 d + 3∫sin^2 d + ∫ d).

The integral of cos^2 and sin^2 over one period is π, and the integral of over [0, 2] is ^2.

Thus, the final result is:

= √2 (π + 3π + ^2)

= √2 (4π + ^2).

b) To calculate the integral ∬d, where is the upper hemisphere with center at the origin and radius > 0, we need to evaluate the surface integral over the hemisphere.

The surface can be parametrized by spherical coordinates as (, ) = (sincos, sinsin, cos), where ∈ [0, /2] and ∈ [0, 2].

learn more about derivatives here: a) To calculate the integral ∫(x^2 + 3y^2 + z) d, where () = (cos, sin, ) with ∈ [0, 2], we need to parametrize the surface given by ().

The surface () represents a helicoid that extends along the z-axis as varies. The parameter ∈ [0, 2] represents a full rotation around the z-axis.

To calculate the integral, we use the surface area element d = ||′() × ′′()|| d, where ′() and ′′() are the first and second derivatives of () with respect to .

We have:

′() = (-sin, cos, 1)

′′() = (-cos, -sin, 0)

Now, we calculate the cross product:

′() × ′′() = (-sin, cos, 1) × (-cos, -sin, 0)

                = (-cos, -sin, 1)

The magnitude of ′() × ′′() is √(cos^2 + sin^2 + 1) = √2.

Therefore, the integral becomes:

∫(x^2 + 3y^2 + z) d = ∫(cos^2 + 3sin^2 + ) √2 d.

Integrating term by term, we have:

= √2 ∫(cos^2 + 3sin^2 + ) d

= √2 (∫cos^2 d + 3∫sin^2 d + ∫ d).

The integral of cos^2 and sin^2 over one period is π, and the integral of over [0, 2] is ^2.

Thus, the final result is:

= √2 (π + 3π + ^2)

= √2 (4π + ^2).

b) To calculate the integral ∬d, where is the upper hemisphere with center at the origin and radius > 0, we need to evaluate the surface integral over the hemisphere.

The surface can be parametrized by spherical coordinates as (, ) = (sincos, sinsin, cos), where ∈ [0, /2] and ∈ [0, 2].

learn more about derivatives here: brainly.com/question/29144258

#SPJ11

you flip a coin twice. what is the probability that you observe tails on the first flip and heads on the second flip? (write as a decimal)

Answers

.25

Step-by-step explanation:

probability can be difficult to answer because of the overlap with possibility and chances etc etc... lower level classes will typically take the answer .25 while higher-level classes may prefer the answer .5

Therefore, the probability of observing tails on the first flip and heads on the second flip is 0.25 or 1/4.

When flipping a fair coin twice, the outcome of each flip is independent of the other. The probability of observing tails on the first flip is 1/2 (0.5), and the probability of observing heads on the second flip is also 1/2 (0.5).

To find the probability of both events occurring, we multiply the probabilities together:

P(tails on first flip and heads on second flip) = P(tails on first flip) * P(heads on second flip) = 0.5 * 0.5 = 0.25.

To know more about probability,

https://brainly.com/question/15871908

#SPJ11

In a volatile housing market, the overall value of a home can be modeled by V(x)=325x^2-4600x+145000, where v represents the value of the home and x represents each year after 2020. Find the vertex and interpret what the vertex of this function means in terms of the value of the home.

Answers

The vertex of the quadratic function foer the value of a home, and the interpretation of the vertex are;

Vertex; (7.08, 128,723.08)

The vertex can be interpreted as follows; In the yare 2027, the value of a nome will be lowest value of $128723.08

What is a quadratic function?

A quadratic function is a function of the form; f(x) = a·x² + b·x + c, where a ≠ 0, and a, b, and c are numbers.

The model for the value of a home, V(x) is; V(x) = 325·x² - 4600·x + 145,000, where;

v = The value of the home

x = The year after 2020

The vertex of the function can be obtained from the x-coordinates at the vertex of a quadratic function, which is; x = -b/(2·a), where;

a = The coefficient of x², and

b = The coefficient of x

Therefore, at the vertex, we get;

x = -(-4600)/(2 × 325) = 92/13 ≈ 7.08

Therefore, the y-coordinate of the vertex is; V(x) = 325×(92/13)² - 4600×(92/13) + 145,000 ≈ 128,723.08

The vertex is therefore; (7.08, 128,723.08)

The interpretation of the vertex is as follows;

Vertex; (7.08, 128,723.08)

The year of the vertex, x ≈ 7 years

The value of a home at the vertex year is about; $128,723

The positive value of the coefficient a indicates that the vertex is a minimum point

The vertex indicates that the value of a home in the market will be lowest in about 7 years after 2020, which is 2027

Therefore, at the vertex, after about 7 years the value of a home will be lowest at about $1228,723

Learn more on the vertex of quadratic functions here: https://brainly.com/question/31241321

#SPJ1

For y=f(x) = x°, x=2, and Ax = 0.06 find a) Ay for the given x and Ax values, b) dy = f'(x)dx, c) dy for the given x and Ax values.

Answers

Ay(derivative) for the given x and Ax values is 0.06, dy = f'(x)dx ln(x)dx and dy for the given x and Ax values 0.06 ln(2).

a) Since Ax = 0.06,

We are given the function y = f(x) = x°, where x is a given value. In this case, x = 2. To find Ay, we substitute x = 2 into the function:

                 Ay =f'(x)Ax

                      = f'(2)Ax

                      = 0.06.

b) The derivative of f(x) = x° is

To find dy, we need to calculate the derivative of the function f(x) = x° and then multiply it by dx.

                 dy = f'(x)dx

                       = ln(x)dx.

c) dy = ln(2) · 0.06

        = 0.06 ln(2).

To know more about derivative refer here:

https://brainly.com/question/29020856#

#SPJ11

in AABC (not shown), LABC = 60° and AC I BC. If AB = x, then
what is the area of AABC, in terms of x?
x^2 sqrt 3

Answers

The area of triangle ABC is x^2√3. The area of a triangle can be calculated using the formula A = (1/2) * base * height. In this case, the base is AB, and the height is the perpendicular distance from point C to line AB.

Since ∠LABC = 60°, triangle ABC is an equilateral triangle. Therefore, the perpendicular from point C to line AB bisects AB, creating two congruent right triangles.

Let's call the point where the perpendicular intersects AB as D. Since triangle ABD is a 30-60-90 triangle, we know that the ratio of the sides is 1:√3:2. The length of AD is x/2, and CD is (√3/2) * (x/2) = x√3/4.

Thus, the height of triangle ABC is x√3/4. Plugging the values into the area formula, we get A = (1/2) * x * (x√3/4) = x^2√3/8. Therefore, the area of triangle ABC is x^2√3.

LEARN MORE ABOUT  triangle here: brainly.com/question/29083884

#SPJ11

Determine if and how the following line and plane intersect. If they intersect at a single point, determine the point of intersection. Line: (x, y, z) = (4.-2, 3) + (-1,0.9) Plane: 4x - 3y - 2+ 7 = 0

Answers

To determine if and how the given line and plane intersect, we need to compare the equation of the line and the equation of the plane.

The line is represented parametrically as (x, y, z) = (4, -2, 3) + t(-1, 0, 9), where t is a parameter. The equation of the plane is 4x - 3y - 2z + 7 = 0. To find the point of intersection, we substitute the parametric equation of the line into the equation of the plane and solve for the parameter t.

Substituting the line's equation into the plane's equation gives us: 4(4 - t) - 3(-2) - 2(3 + 9t) + 7 = 0.

Simplifying this equation yields:

16 - 4t + 6 + 18t - 6 + 7 = 0,

18t - 4t + 6 + 18 - 6 + 7 = 0,

14t + 25 = 0,

14t = -25,

t = -25/14.

Therefore, the line and plane intersect at a single point. Substituting the value of t back into the equation of the line gives us the point of intersection :(x, y, z) = (4, -2, 3) + (-1, 0, 9)(-25/14) = (4 - (-25/14), -2, 3 + (9(-25/14))) = (73/14, -2, -135/14). Hence, the line and plane intersect at the point (73/14, -2, -135/14).

To know more about parametric equations, refer here :

https://brainly.com/question/31461459#

#SPJ11

Decide whether or not there is a simple graph with degree sequence [0,1,1,1,1,2]. You must justify your answer. (b) In how many ways can each of 7 students exchange email with precisely 3

Answers

(a) We can construct a simple graph with degree sequence [0,1,1,1,1,2]. (b) Each of 7 students can exchange email with precisely 3 in 35 ways.

a) Yes, a simple graph with degree sequence [0,1,1,1,1,2] can be constructed.

A simple graph is defined as a graph that has no loops or parallel edges. In order to construct a simple graph with degree sequence [0, 1, 1, 1, 1, 2], we must begin with the highest degree vertex since a vertex with the highest degree must be connected to each other vertex in the graph.

So, we start with the vertex with degree 2, which is connected to every other vertex, except those with degree 0.Next, we add two edges to each of the four vertices with degree 1. Finally, we have a degree sequence of [0, 1, 1, 1, 1, 2] with a total of six vertices in the graph. Thus, we can construct a simple graph with degree sequence [0,1,1,1,1,2].

b) The number of ways each of 7 students can exchange email with precisely 3 is 35.

To solve this, we must first select three students from the seven available to correspond with one another. The remaining four students must then be paired up in pairs of two to form the necessary correspondences.In other words, if we have a,b,c,d,e,f,g as the 7 students, we can select the 3 students in the following ways: (a,b,c),(a,b,d),(a,b,e),(a,b,f),(a,b,g),(a,c,d),(a,c,e),.... and so on. There are 35 possible combinations of 3 students from a group of 7 students. Therefore, each of 7 students can exchange email with precisely 3 in 35 ways.

Learn more about vertex :

https://brainly.com/question/32432204

#SPJ11

Find the radian measure of the angle with the given degree 1600 degree

Answers

The radian measure of the angle with 1600 degrees is approximately 27.8533 radians.

To convert from degrees to radians, we use the fact that 1 radian is equal to 180/π degrees. Therefore, we can set up the following proportion:

1 radian = 180/π degrees

To find the radian measure of 1600 degrees, we can set up the following equation:

1600 degrees = x radians

By cross-multiplying and solving for x, we get:

x = (1600 degrees) * (π/180) radians

Evaluating this expression, we find that x is approximately equal to 27.8533 radians.

Therefore, the radian measure of the angle with 1600 degrees is approximately 27.8533 radians.

Learn more about radian here: brainly.com/question/19278379

#SPJ11




Aspherical balloon is inflating with heliurn at a rate of 1921 t/min. How fast is the balloon's radius increasing at the instant the radius is 4 ft? How fast is the surface area increasing?

Answers

The balloon's radius is increasing at a rate of 6.54 ft/min when the radius is 4 ft. The surface area is increasing at a rate of 166.04 sq ft/min.

Let's denote the radius of the balloon as r and the rate at which it is increasing as dr/dt. We are given that dr/dt = 1921 ft/min.

We need to find dr/dt when r = 4 ft.

To solve this problem, we can use the formula for the volume of a sphere: V = (4/3)πr^3. Taking the derivative of this equation with respect to time, we get dV/dt = 4πr^2(dr/dt).

Since the balloon is being inflated with helium, the volume is increasing at a constant rate of dV/dt = 1921 ft/min.

We can substitute the given values and solve for dr/dt:

1921 = 4π(4^2)(dr/dt)

1921 = 64π(dr/dt)

dr/dt = 1921 / (64π)

dr/dt ≈ 6.54 ft/min

So, the balloon's radius is increasing at a rate of approximately 6.54 ft/min when the radius is 4 ft.

Next, let's find the rate at which the surface area is increasing. The formula for the surface area of a sphere is A = 4πr^2. Taking the derivative of this equation with respect to time, we get dA/dt = 8πr(dr/dt).

Substituting the values we know, we get:

dA/dt = 8π(4)(6.54)

dA/dt ≈ 166.04 sq ft/min

Therefore, the surface area of the balloon is increasing at a rate of approximately 166.04 square feet per minute.

Learn more about surface area of the balloon:

https://brainly.com/question/28447756

#SPJ11








Determine whether the vectors [ -1, 2,5) and (3,4, -1) are orthogonal. Your work must clearly show how you are making this determination.

Answers

To determine whether two vectors are orthogonal, we need to check if their dot product is zero.

Given the vectors [ -1, 2, 5) and (3, 4, -1), we can calculate their dot product as follows:

Dot product = (-1 * 3) + (2 * 4) + (5 * -1)

          = -3 + 8 - 5

          = 0

Since the dot product of the two vectors is zero, we can conclude that they are orthogonal.

The dot product of two vectors is a scalar value obtained by multiplying the corresponding components of the vectors and summing them up. If the dot product is zero, it indicates that the vectors are orthogonal, meaning they are perpendicular to each other in three-dimensional space. In this case, the dot product calculation shows that the vectors [ -1, 2, 5) and (3, 4, -1) are indeed orthogonal since their dot product is zero.

To learn more about dot product click here: brainly.com/question/23477017

#SPJ11

III. Calculate the divergence of the vector field.
a) F(x,y)=x?i+ 2y2; b) F(x,y,z)=x?zi – 2xzj+ yzk y evaluar en el punto (2,1,3).

Answers

a) To calculate the divergence of the vector field F(x, y) = x^3i + 2y^2j, we need to find the partial derivatives of the components with respect to their corresponding variables and then sum them up.  Answer :  the divergence of the vector field F at the point (2, 1, 3) is 13.

∇ · F = (∂/∂x)(x^3) + (∂/∂y)(2y^2)

        = 3x^2 + 4y

b) To calculate the divergence of the vector field F(x, y, z) = x^2zi - 2xzj + yzk, we need to find the partial derivatives of the components with respect to their corresponding variables and then sum them up.

∇ · F = (∂/∂x)(x^2z) + (∂/∂y)(-2xz) + (∂/∂z)(yz)

        = 2xz + 0 + y

        = 2xz + y

To evaluate the divergence at the point (2, 1, 3), we substitute the values of x = 2, y = 1, and z = 3 into the expression:

∇ · F = 2(2)(3) + 1

        = 12 + 1

        = 13

Therefore, the divergence of the vector field F at the point (2, 1, 3) is 13.

Learn more about  vector  : brainly.com/question/29740341

#SPJ11








Question 3 Find the area bounded by the curves y= square root(x) and y=x^2 Round the answer to two decimal places.

Answers

The area bounded by the curves y = √(x) and y = x^2 is approximately 0.23 square units.

What is the rounded value of the area enclosed by the curves y = √(x) and y = x^2?

The area bounded by the curves y = √(x) and y = x^2 can be found by integrating both functions within the given range. To determine the points of intersection, we set the two equations equal to each other:

√(x) = x^2

Rearranging the equation, we get:

x^2 - √(x) = 0

Solving this equation will yield two points of intersection, x = 0 and x ≈ 0.59. To find the area, we integrate the difference between the two curves within this range:

A = ∫[0, 0.59] (x^2 - √(x)) dx

Evaluating this integral gives us the approximate area of 0.23 square units.

Learn more about integrals

brainly.com/question/31059545

#SPJ11

You get 3 F values in a 2x2 Factorial ANOVA. What do they represent?
a. One for each of the three possible interactions
b. One for the main effect and two for the interaction
c. One for each of the three main effects
d. One for each of the two main effects and one for the interaction

Answers

In a 2x2 Factorial ANOVA, the three F values represent the significance of the three main effects (Factor A, Factor B, and their interaction). They help determine the impact of the factors and their interactions on the dependent variable under investigation.

In a 2x2 Factorial ANOVA, the three F values represent one for each of the three main effects and the interaction between the factors. The correct answer is option C: One for each of the three main effects.

In a factorial ANOVA, the main effects refer to the effects of each individual factor, while the interaction represents the combined effect of multiple factors. In a 2x2 factorial design, there are two factors, each with two levels. The three main effects correspond to the effects of Factor A, Factor B, and the interaction between the two factors.

The F value is a statistical test used in ANOVA to assess the significance of the effects. Each main effect and the interaction have their own F value, which measures the ratio of the variability between groups to the variability within groups. These F values help determine whether the effects are statistically significant and provide valuable information about the relationships between the factors and the dependent variable.

Learn more about multiple here: https://brainly.com/question/30072771

#SPJ11

Other Questions
disk scheduling algorithms are necessary because we want to minimize the movement of the disk arm motion Help plsss asap:((!!Determine the area of the region bounded by the given function, the c-axis, and the given vertical lines. The region lies above the z-axis. f(x) = e-*+2, 1 = 1 and 2 = 2 Preview TIP Enter your answer a circular loop of wire 51 mm in radius carries a current of 127 a. find the (a) magnetic field strength and (b) energy density at the center of the loop. Which of the following is not true about primary keys?A) Primary keys cannot be null.B) Primary keys must be unique.C) Primary keys must be a single attribute.D) Primary keys are used to represent relationships.E) Primary keys can be defined using a SQL CONSTRAINT phrase. a technique for searching for statistical patterns in datasets is 8. You go to work at a company that pays $0.01 for the first day, $0.02 for the second day, $0.04 for the third day, and so on. If the daily wage keeps doubling, what would your total income for worki A juvenile is adjudicated delinquent by a juvenile court, then a separate hearing is held to determine what the punishment or treatment, or a combination of both will be. This is known as a ___ process. The Laplace Transform of 9t -3t f(t) = 6 + 2e = is ____ = Evaluate dy and Ay for the function below at the indicated values. 8 y=f(x) = 90(1-3): x=3, dx = Ax= 0.125 ; = , dy= Ay=(Type an integer or a decimal.) A stock price is currently $30. During each two-month period for the next four months it is expected to increase by 8% or decrease by 10%. No dividend payment is expected during these two periods. The risk-free interest rate is 5% per annum. Use a two-step tree to calculate the value of a European-style derivative that pays off [max(30-ST,0)]2 , where ST is the stock price in four months. (hint: please note that this is not a typical put option, since the final payoff is the square of the normal put option payoff.) Calling card A charges a connect fee of 69 plus 1.9 perminute. Calling card B has no connect fee but charges 6 perminute.Which system of equations can be used to determine the number of minutes (x) where the price (y) is the same for both cards? Find the sum. 1 + 1.07 + 1.072 +1.073 + ... +1.0714 The sum is (Round to four decimal places as needed.) at the profitmaximizing output level, the firm earns a. zero economic profit. b. a profit of $600. c. a profit of $1,200. d. a profit of $2,700. My last assignment and my last bit of points, thank you to everyone thats helped :)You have explored how the Federal Reserve carries out monetary policy. You also know that monetary policy involves the money supply and interest rates. Now, it is time for you to see how effective (or not) monetary policy is in action.1) You will begin by writing down the definition of "monetary policy."2) The specific action that you will explore is expansionary monetary policy. This is when the Federal Reserve increases the money supply. Explain how increasing the money supply affects interest rates. Then explain how expansionary monetary policy affects consumption, investments, and the growth of the economy.3) Now it is time to look at a specific monetary policy. You already know about the recession that began at the end of 2007. The Federal Reserve addressed this economic downturn by carrying out expansionary monetary policy. Using the provided document titled "Primary Rates," find the primary interest rate on November 1, 2007. The primary rate is the interest rate available to financially sound banks. To find the primary rate on November 1, 2007, go to the "Primary Rate" column and the row marked "01-Nov-07" in the Boston column. Write down this interest rate. Next, locate the primary rate on October 29, 2008 (or "29-Oct-08" in the Boston column). This was the primary rate almost one year later. Write down this rate. Examine the interest rates in between these dates.Click here for the "Primary Rates" spreadsheet.4) In 1 or 2 sentences, describe the trend (or general direction) in the interest rates between November 1, 2007, and October 29, 2008, by answering the following questions: Are the interest rates increasing or decreasing? Does the trend indicate that the Federal Reserve is increasing or decreasing the growth of the money supply during this time?5) Next, examine consumption, investments, and Gross Domestic Product during 2008 and 2009, using the table below. The table shows the percentage changes in each area. The changes are shown in quarters (or four parts) for each year. For example, the first quarter is January, February, and March.In 2 or 3 sentences, explain the trend in consumption, investments, and Gross Domestic Product. Are these areas generally increasing or decreasing during this time? In 1 or 2 sentences, explain if these trends show that expansionary monetary policy was effective in 2008-2009.6) Finally, examine consumption, investments, and Gross Domestic Product for three quarters in 2010 using the table below.In 2 or 3 sentences, explain the trend in consumption, investments, and Gross Domestic Product. Are these areas generally increasing or decreasing during these quarters? In 1or 2 sentences, explain if these trends show that expansionary monetary policy was effective beginning in 2010.7) There were other actions (including expansionary fiscal policy) that occurred during these times and could also have contributed to economic performance. For this project, assume that the changes in consumption, investments, and GDP occurred (at least in part) from monetary policy. In 3 or 4 sentences, compare the trends in 2008-2009 to the trends in 2010. Next, provide an explanation for the differences in these trends, as by discussing the role of timing or confidence. when the mars candy company added ice cream products under the snickers brand, the firm was engaged in corporate branding. brand licensing. perceived value branding. brand extension. brand association. Find the following derivatives. You do not need to simplify the results. (a) (6 pts.) f(2)=3 +18 522 f'(z) = f(x) = (b) (7 pts.) 9(v)-(2-4) In(3+2y) g'(v) = (c) (7 pts.) h(z)=1-2 h'(z) WRITING Task3 COMPLETE THESE SENTENCES WITH A SUITABLE RELATIVE PRONOUN:(where, whose*2, which, who *2)_helped me when I fell down in the street.complained about the room service.we first met. Do you remember?1.That is the man_2.That is the woman3.This is the park_4.So, James is the man5.They had to put away the dog.6. I'm looking for a personson came on the school trip with us?bit the boy. It was too dangerous.surname begins with a "k".Total based on a report by scientists at scripps who studied marine fossil assemblages in layers deposited over the last 85 million years, geologically, the "modern ocean" ecosystem is distinct from the 287 megabytes downloaded if 14.4% complete how many are downloaded? Round to nearest tenth Question 4The term structure of risk-free interest rates is flat at 1% peryear. Consider the following risk-free bonds with annual couponpayments: Coupon rateFace valueMaturityPrice