A compound has 54.5% carbon, 9.1% hydrogen and 36.4% oxygen. It has a molecular mass of 88. Find it's molecular formula?

Answers

Answer 1

The molecular formula of the compound with 54.5% carbon, 9.1% hydrogen, and 36.4% oxygen, and a molecular mass of 88 is [tex]\(\text{C}_4\text{H}_9\text{O}_2\).[/tex]

To determine the molecular formula of the compound, we need to find the empirical formula first. The empirical formula represents the simplest whole-number ratio of atoms in a compound.

Let's assume we have 100 grams of the compound. This means we have 54.5 grams of carbon, 9.1 grams of hydrogen, and 36.4 grams of oxygen. To convert these masses to moles, we divide them by their respective atomic masses: carbon (12.01 g/mol), hydrogen (1.01 g/mol), and oxygen (16.00 g/mol). This gives us approximately 4.54 moles of carbon, 9.01 moles of hydrogen, and 2.27 moles of oxygen.

Next, we need to find the simplest whole-number ratio of these moles. Dividing each value by the smallest number of moles (2.27), we get approximately 2 moles of carbon, 4 moles of hydrogen, and 1 mole of oxygen.

Therefore, the empirical formula is [tex]\(\text{C}_2\text{H}_4\text{O}\)[/tex]. To determine the molecular formula, we need to find the ratio between the empirical formula mass and the molecular mass given (88). The empirical formula mass of [tex]\(\text{C}_2\text{H}_4\text{O}\)[/tex] is approximately 44 g/mol.

Dividing the molecular mass (88) by the empirical formula mass (44), we find that the ratio is 2. This means that the molecular formula is twice the empirical formula: [tex]\(\text{C}_4\text{H}_9\text{O}_2\)[/tex].

To learn more about molecular mass refer:

https://brainly.com/question/15880821

#SPJ11


Related Questions

write the reaction for the saponification of glyceryl tripalmitate with sodium hydroxide

Answers

The reaction for the saponification of glyceryl tripalmitate with sodium hydroxide is C51H98O6 + 3 NaOH → 3 C15H31COONa + C3H8O3

The saponification reaction of glyceryl tripalmitate (a triglyceride) with sodium hydroxide can be represented by the following equation:

Glyceryl tripalmitate + 3 Sodium hydroxide → 3 Sodium palmitate + Glycerol

The balanced chemical equation for the reaction is:

C51H98O6 + 3 NaOH → 3 C15H31COONa + C3H8O3

In this reaction, glyceryl tripalmitate reacts with sodium hydroxide (NaOH) to produce three molecules of sodium palmitate (C15H31COONa) and one molecule of glycerol (C3H8O3). This process is known as saponification, which involves the hydrolysis of the ester bonds in the triglyceride molecule, resulting in the formation of soap (sodium palmitate) and glycerol.

Know more about saponification here:

https://brainly.com/question/2263502

#SPJ11

which of the following conditions is/are met at the equivalence point of the titration of a monoprotic weak acid with a strong base? 1. the moles of base added from the buret equals the initial moles of weak acid. 2. the volume of base added from the buret must equal the volume of acid titrated. 3. the ph of the solution is greater than 7.00.

Answers

At the equivalence point of a titration, the number of moles of acid present in the solution equals the number of moles of base added from the buret.

At the equivalence point of a titration, the number of moles of acid present in the solution equals the number of moles of base added from the buret. Therefore, the first condition is met at the equivalence point of the titration of a monoprotic weak acid with a strong base. The second condition is not necessarily met, as the volume of base added may be less than or greater than the volume of acid titrated depending on the strength of the acid and base used. The third condition is generally not met at the equivalence point of the titration of a monoprotic weak acid with a strong base, as the resulting solution will typically have a pH greater than 7.00 due to the formation of the conjugate base of the weak acid. The pH at the equivalence point of a titration depends on the strength of the acid and base being used.

To know more about titration visit: https://brainly.com/question/31870069

#SPJ11

Draw one of the oxygen-containing cations formed in the mass spectrometer by alpha cleavage of the following compound. CH3CH2CH2CHO

Answers

The oxygen-containing cation formed in the mass spectrometer by alpha cleavage of CH3CH2CH2CHO is CH3CH2CH2O+. This cation has an oxygen atom bonded to a carbon atom and is positively charged due to the loss of an electron.

To answer your question, let's first define what a mass spectrometer is. A mass spectrometer is a scientific instrument used to measure the mass-to-charge ratio of ions. It works by ionizing a sample and then separating the resulting ions based on their mass-to-charge ratio.
Now, let's talk about alpha cleavage. Alpha cleavage is a type of fragmentation reaction that occurs when a bond adjacent to a carbonyl group (C=O) is broken. In the case of CH3CH2CH2CHO, the alpha cleavage would result in the formation of a cation with the formula CH3CH2CH2O+.
This cation is an oxygen-containing cation, as it has an oxygen atom bonded to a carbon atom, which is then bonded to three hydrogen atoms. The positive charge on the cation indicates that it has lost an electron in the ionization process.
To know more about spectrometer visit:

https://brainly.com/question/30085361

#SPJ11

what is the mass of lithium hydroxide needed to react completely with 35.0 ml of sulfuric acid 0.794 m?

Answers

Apprοximately 1.33 grams οf lithium hydrοxide (LiOH) are needed tο react cοmpletely with 35.0 mL οf sulfuric acid sοlutiοn with a cοncentratiοn οf 0.794 M.

How tο calculate the mass οf lithium hydrοxide?

Tο calculate the mass οf lithium hydrοxide (LiOH) needed tο react cοmpletely with sulfuric acid (H₂SO₄), we need tο determine the stοichiοmetry οf the balanced equatiοn and use the mοlarity and vοlume οf the sulfuric acid sοlutiοn.

The balanced equatiοn fοr the reactiοn between lithium hydrοxide and sulfuric acid is:

2LiOH + H₂SO₄ → Li₂SO₄ + 2H₂O

Frοm the equatiοn, we can see that 2 mοles οf LiOH react with 1 mοle οf H₂SO₄.

Given:

Vοlume οf sulfuric acid (H₂SO₄) = 35.0 mL = 0.0350 L

Mοlarity οf sulfuric acid (H₂SO₄) = 0.794 M

Tο determine the mοles οf sulfuric acid present, we can use the fοrmula:

Mοles = Mοlarity * Vοlume (in liters)

Mοles οf H₂SO₄ = 0.794 M * 0.0350 L

= 0.0278 mοl

Accοrding tο the stοichiοmetry οf the balanced equatiοn, 2 mοles οf LiOH react with 1 mοle οf H₂SO₄. Therefοre, tο react cοmpletely with 0.0278 mοl οf H₂SO₄, we need:

Mοles οf LiOH = 2 * Mοles οf H₂SO₄

= 2 * 0.0278 mοl

= 0.0556 mοl

Nοw, we need tο calculate the mοlar mass οf LiOH:

Mοlar mass οf LiOH = (6.94 g/mοl) + (16.00 g/mοl) + (1.01 g/mοl)

= 23.95 g/mοl

Finally, we can calculate the mass οf LiOH needed:

Mass οf LiOH = Mοles οf LiOH * Mοlar mass οf LiOH

= 0.0556 mοl * 23.95 g/mοl

≈ 1.33 g

Therefοre, apprοximately 1.33 grams οf lithium hydrοxide (LiOH) are needed tο react cοmpletely with 35.0 mL οf sulfuric acid sοlutiοn with a cοncentratiοn οf 0.794 M.

Learn more about lithium hydroxide

https://brainly.com/question/29974821

#SPJ4

which molecule most likely has an electron deficient central atom?

Answers

The molecule that most likely has an electron-deficient central atom is one that has a central atom with an incomplete octet or fewer electrons than what is needed for a stable configuration.

Common examples of molecules with electron-deficient central atoms include boron trifluoride (BF3) and aluminum trichloride (AlCl3). These molecules have central atoms (boron and aluminum, respectively) with only six valence electrons, which is fewer than the octet rule suggests for stability.

In these cases, the central atom forms covalent bonds with other atoms, but it does not have enough electrons to complete its octet. As a result, these molecules often act as Lewis acids, meaning they can accept electron pairs from other species to fill their electron deficiency.

For more details regarding the central atom, visit:

https://brainly.com/question/31519174

#SPJ1

What Type Of Membrane Does A Calcium-Selective Electrode Use? a. LaF3 b. AgCl c. Liquid d. Glass

Answers

A calcium-selective electrode typically uses a glass membrane. A calcium-selective electrode is a type of ion-selective electrode (ISE) that is used to measure the concentration of calcium ions in a solution.

The electrode consists of a membrane that is selective to calcium ions and a reference electrode. The membrane is designed to only allow calcium ions to pass through while blocking other ions. This allows the electrode to selectively measure the concentration of calcium ions in a solution. The type of membrane used in a calcium-selective electrode is usually made of glass or liquid. Glass membranes are commonly used because they are highly selective and stable, providing accurate and reliable measurements. Liquid membranes, on the other hand, are less stable but are more flexible and can be customized to suit specific applications. The membrane of a calcium-selective electrode contains a calcium-sensitive ionophore, which is a chemical that binds to calcium ions and generates a measurable electrical signal.

To know more about electrodes

https://brainly.com/question/18251415

#SPJ11

a certain reaction has an energy change of δ=−34 kj and an activation energy of a=63 kj. what is the activation energy of the reverse reaction

Answers

a certain reaction has an energy change of δ=−34 kj and an activation energy of a=63 kj. the activation energy of the reverse reaction (Ea reverse) will be -63 kJ.

The activation energy of the reverse reaction can be determined by considering the relationship between the activation energies of the forward and reverse reactions. For a reversible reaction, the activation energy of the reverse reaction is equal in magnitude but opposite in sign to the activation energy of the forward reaction. In this case, the activation energy of the forward reaction (Ea forward) is given as 63 kJ. Since the activation energy represents the energy barrier that must be overcome for a reaction to occur, the reverse reaction will have an activation energy equal in magnitude but opposite in sign to Ea forward.

Therefore, the activation energy of the reverse reaction (Ea reverse) will be -63 kJ. The negative sign indicates that energy is released during the reverse reaction, as opposed to being required for the forward reaction. This relationship between activation energies is a consequence of the principle of microscopic reversibility, which states that the elementary steps of a forward reaction can occur in reverse to reform the reactants.

Learn more about activation energy here:

https://brainly.com/question/32469341

#SPJ11

chemical reaction at equilibrium : 2no2(g) ⇔ n2o4(g) ∆h°rxn<0 if the temperature is increased by 20 K while the volume is kept constant, how will Keq for the reaction change? A) increase B) decrease C) stay the same

Answers

The answer is B) Decrease. The equilibrium constant (Keq) for the reaction will decrease when the temperature is increased by 20 K while the volume is kept constant.

When the temperature of a chemical reaction at equilibrium is increased, the equilibrium constant (Keq) can change. In this case, the reaction is exothermic (∆H°rxn < 0), which means it releases heat.

According to Le Chatelier's principle, when the temperature is increased, the equilibrium will shift in the direction that absorbs heat. Since the reaction is exothermic, it will favor the reactant side in order to consume the excess heat.

In this reaction, the forward reaction (2NO2 ⇔ N2O4) is the exothermic direction. Therefore, when the temperature is increased, the equilibrium will shift to the left, favoring the formation of more reactants (NO2).

As a result, the concentration of NO2 will increase, while the concentration of N2O4 will decrease. This change in concentrations will lead to a decrease in the value of Keq.

Know more about equilibrium constant here:

https://brainly.com/question/28559466

#SPJ11

consider the reaction represented by the following equation: 2na cl2->2nacl. how many moles of nacl can be produced from 2 mol of cl2 and excess na, assuming a complete reaction?

Answers

According to the balanced equation, 2 mol of Cl2 react with 2 mol of Na to produce 2 mol of NaCl. Therefore, if 2 mol of Cl2 are present in excess Na, then 2 mol of NaCl can be produced.

4 moles of NaCl can be produced from 2 moles of Cl2 and excess Na, assuming a complete reaction.2 mol of Cl2 react with 2 mol of Na to produce 2 mol of NaCl. Therefore, if 2 mol of Cl2 are present in excess Na, then 2 mol of NaCl can be produced. In the given reaction, 2Na + Cl2 -> 2NaCl, the balanced equation shows that 1 mole of Cl2 reacts with 2 moles of Na to produce 2 moles of NaCl. Since you have 2 moles of Cl2 and excess Na available, the complete reaction will produce 2 x 2 = 4 moles of NaCl. Therefore, 4 moles of NaCl can be produced from 2 moles of Cl2 and excess Na, assuming a complete reaction.

To know more about produced visit:

https://brainly.com/question/30698459

#SPJ11

Condisder the following compounds: H2S, H2Se, H2 Te. The molecule with the highest boiling point is, while the molecule with the highest vapor pressure is H2Te; H2 Te H2S; H2Te H2S; H2S H2Te; H2S H2S; H2Se

Answers

The molecule with the highest boiling point among [tex]H_2S[/tex] (hydrogen sulfide), [tex]H_2Se[/tex] (hydrogen selenide), and[tex]\pi H_2Te[/tex](hydrogen telluride) is H2Te. The molecule with the highest vapor pressure is [tex]H_2S[/tex].

Boiling points are influenced by intermolecular forces, and hydrogen telluride has stronger intermolecular forces compared to hydrogen sulfide and hydrogen selenide due to its larger and more polarizable tellurium atom. These stronger intermolecular forces result in higher boiling points for [tex]H_2Te[/tex]. On the other hand, the molecule with the highest vapor pressure is [tex]H_2S[/tex]. Vapor pressure is determined by the ease with which molecules escape from the liquid phase and enter the gas phase. Hydrogen sulfide has a lower boiling point and weaker intermolecular forces compared to [tex]H_2Se[/tex] and [tex]H_2Te[/tex]. Consequently, [tex]H_2S[/tex] molecules are more likely to escape into the gas phase, leading to higher vapor pressure compared to[tex]H_2Se[/tex] and[tex]H_2Te[/tex]. To summarize, [tex]H_2Te[/tex]has the highest boiling point, while [tex]H_2S[/tex]has the highest vapor pressure among the given compounds.

Learn more about Boiling points here:

https://brainly.com/question/28203474

#SPJ11

it took 28.45 ml of 0.1124 m naoh to reach the endpoint when titrating a sample containing 0.4307 g of an unknown acid how many moles of sodium hydroxide were used?

Answers

It took 28.45 ml of 0.1124 m naoh to reach the endpoint when titrating a sample containing 0.4307 g of an unknown acid approximately 0.0032 moles of NaOH were used in the titration.

To determine the number of moles of sodium hydroxide (NaOH) used, we can use the equation:

Moles of NaOH = Volume of NaOH (in liters) × Molarity of NaOH

First, we convert the volume of NaOH used from milliliters to liters:

Volume of NaOH = 28.45 ml = [tex]28.45 * 10^{(-3)}[/tex] L = 0.02845 L

Next, we substitute the known values into the equation:

Moles of NaOH = 0.02845 L × 0.1124 mol/L = 0.0032 mol

Therefore, approximately 0.0032 moles of NaOH were used in the titration.

This calculation is based on the concept of molarity, which relates the number of moles of a solute to the volume of the solution. In this case, the molarity of NaOH is given as 0.1124 M, and by multiplying it by the volume in liters, we obtain the number of moles of NaOH used in the titration.

Learn more about molarity here:

https://brainly.com/question/8732513

#SPJ11

identify the compound with the highest pka. ch2=ch2 ch3nh2 hc ≡≡ ch ch3ch3 ch3oh

Answers

The option A is correct answer which is CHCH₃.

What is Henderson-Hasselbalch equation?

The Henderson-Hasselbalch equation establishes a connection between the pH of acids (in aqueous solutions) and their pKa (acid dissociation constant).

pH = PKₐ + log [salt]/[Acid]

Where,

pH = Acidity of a buffer solution

pKₐ = Negative logarithm of Kₐ

Kₐ = Acid disassociation constant.

Hence, the highest pkₐ means lowest Kₐ which represent least acidic. Out of these compounds, CH₃CH₃ is least acidic because sp³ carbon is least acidic as compared to sp² C, sp C, N or O. Hence, pKₐ of A is Highest.

Hence, The option A is correct answer which is CH₃CH₃.

To learn more about pKₐ and Kₐ from the given link.

https://brainly.com/question/31084008

#SPJ4

Complete question is,

Which of the following has the highest pkₐ?

(a). CH₃CH₃

(b). HC ≡ CH

(c). CH₂ = CH₂

(d). CH₃OH

(e). CH₃NH₂

ORGANIC CHEMISTRY Interpreting the skeletal structure of a neutral organic molecule Answer the questions in the table below about this molecule: What is this molecule's chemical formula? Note: write the simplest molecular chemical formula _ in which each element symbol appears only once_ OCH; OcHz Dcu How many CH3, CHz: &d CH groups are in this molecule?

Answers

The chemical formula of the molecule is [tex]C_7H_{14}O[/tex]. It contains 7 carbon atoms, 14 hydrogen atoms, and 1 oxygen atom. There are 6  [tex]CH_3[/tex] groups, 1  [tex]CH_2[/tex] group, and 0 CH groups in this molecule.

The chemical formula of the molecule can be determined by counting the number of each type of atom present. In this case, we have oxygen (O), carbon (C), and hydrogen (H) atoms. From the skeletal structure, we can see that there is one oxygen atom connected to one carbon atom, denoted as O-C. This accounts for the O and C in the chemical formula.

Next, we count the number of carbon and hydrogen atoms. We have a total of 7 carbon atoms in the molecule, denoted as C. Each carbon atom is connected to three hydrogen atoms, represented as [tex]CH_3[/tex]groups. Therefore, we have 7 carbon atoms multiplied by 3 hydrogen atoms per carbon, which gives us 21 hydrogen atoms.

Additionally, there is one carbon atom connected to two hydrogen atoms, represented as  [tex]CH_2[/tex] group. This contributes 1 hydrogen atom to the total count. Thus, the total number of hydrogen atoms is 21 + 1 = 22.

Putting it all together, we have 7 carbon atoms, 22 hydrogen atoms, and 1 oxygen atom, resulting in the chemical formula  [tex]C_7H_{14}O[/tex] for the molecule.

Regarding the  [tex]CH_3[/tex], CH2, and CH groups, we can count them based on the number of carbon atoms and their respective connections. Since each  [tex]CH_3[/tex]group consists of one carbon atom connected to three hydrogen atoms, and we have 7 carbon atoms in total, there are 7  [tex]CH_3[/tex]groups in the molecule.

Similarly, the  [tex]CH_2[/tex] group consists of one carbon atom connected to two hydrogen atoms, and we have one such group in the molecule.

Finally, there are no CH groups present in the molecule, as there are no carbon atoms connected to a single hydrogen atom (CH).

To summarize, the molecule has the chemical formula  [tex]C_7H_{14}O[/tex] and contains 6  [tex]CH_3[/tex] groups, 1 [tex]CH_2[/tex] group, and 0 CH groups.

To learn more about carbon atoms refer:

https://brainly.com/question/14031015

#SPJ11

calculate the heat released when 0.300 mol of steam at 158 degrees c is cooled to the ice at -83 degrees c.

Answers

The heat released when 0.300 mol of steam at 158°C is cooled to ice at -83°C is approximately -9,183.3 kJ.

How to calculate the heat released?

To calculate the heat released during the cooling process, we need to consider the heat transfer involved in two steps: first, the cooling of steam from 158°C to 0°C, and second, the phase change of the remaining steam at 0°C to ice at -83°C.

Step 1: Cooling of steam from 158°C to 0°C

The heat released during this step can be calculated using the formula:

q₁ = n × C₁ × ΔT

where

n = number of moles of steam

C₁ = molar specific heat capacity of steam

ΔT = change in temperature

Using the molar specific heat capacity of steam (C₁ = 36.9 J/(mol·°C)) and the temperature change (ΔT = 158°C - 0°C = 158°C), we can calculate q₁:

q₁ = 0.300 mol × 36.9 J/(mol·°C) × 158°C = 1,748.94 J

Step 2: Phase change from steam at 0°C to ice at -83°C

The heat released during this step can be calculated using the formula:

q₂ = n × ΔH_fusion

where

ΔH_fusion = molar enthalpy of fusion

The molar enthalpy of fusion for water is 6.01 kJ/mol. Therefore, q₂ can be calculated as:

q₂ = 0.300 mol × 6.01 kJ/mol = 1.803 kJ

The total heat released is the sum of q₁ and q₂:

Total heat released = q₁ + q₂ = 1,748.94 J + 1.803 kJ = 1,748.94 J + 1,803 J = -9,183.3 J ≈ -9,183.3 kJ

Therefore, the heat released when 0.300 mol of steam at 158°C is cooled to ice at -83°C is approximately -9,183.3 kJ.

To know more about specific heat capacity, refer here:
https://brainly.com/question/1105305
#SPJ4

Draw the Newman structure for the most stable conformation of 1-bromopropane considering rotation about the C1-C2 bond.

Answers

The most stable conformation of 1-bromopropane, considering rotation about the C1-C2 bond, can be represented using the Newman projection. In this conformation, the bromine atom and the methyl group are positioned in an anti configuration.

In the Newman projection, we visualize the molecule by looking directly down the bond of interest. For 1-bromopropane, the C1-C2 bond is the one we consider. To determine the most stable conformation, we need to consider the steric interactions between the atoms or groups attached to the carbon atoms.

In the most stable conformation, the bromine atom (Br) and the methyl group (CH3) are positioned in an anti configuration. This means that they are as far away from each other as possible, reducing steric hindrance. The ethyl group (CH2CH3) is located on the opposite side of the molecule. Visually, in the Newman projection, the methyl group (CH3) would be represented as a circle on the left side, the bromine atom (Br) as a dot in the center, and the ethyl group (CH2CH3) as a vertical line on the right side. This conformation minimizes steric interactions and maximizes stability.

learn more about bromine atom Refer: https://brainly.com/question/14286867

#SPJ11

Which response includes only those compounds that can exhibit hydrogen bonding? CH, ASH3 CH3NH2, H.Te HF Select one: a. ASH, CH3NH2 b. CH3NH2, HF CASH₂, H₂Te d. CH ASH, H.Te

Answers

I don’t know because I don’t remember this I need you too help me get the answers

The compounds that can exhibit hydrogen bonding are [tex]CH_3NH_2[/tex] and HF.

Hydrogen bonding is a special type of intermolecular force that occurs when a hydrogen atom is bonded to a highly electronegative atom (such as nitrogen, oxygen, or fluorine) and is attracted to another electronegative atom in a neighboring molecule.

In the given options, [tex]CH_3NH_2[/tex] (methylamine) and HF (hydrogen fluoride) are the only compounds that meet this criterion. In [tex]CH_3NH_2[/tex], the nitrogen atom is bonded to three hydrogen atoms, and it has a lone pair of electrons, making it capable of forming hydrogen bonds. In HF, the hydrogen atom is bonded to fluorine, and the high electronegativity of fluorine allows for the formation of hydrogen bonds.

The other compounds in the options, CH (methylene) and H₂Te (tellurium hydride), do not have the necessary hydrogen atoms bonded to highly electronegative atoms, so they cannot exhibit hydrogen bonding.

Therefore, the correct answer is (b) [tex]CH_3NH_2[/tex] HF, as these are the only compounds that can participate in hydrogen bonding.

Learn more about Hydrogen bonding here:

https://brainly.com/question/31139478

#SPJ11

Which of the following is an alpha-keto acid/alpha-amino acid pair used in transamination?
Group of answer choices
A) Pyruvate/leucine
B) Oxaloacetate/aspartate
C) Oxaloacetate/glutamate
D) a-ketoglutarate/aspartate
E) a-keto-b-hydroxybutyrate/phenylalanine

Answers

In transamination reactions, an amino group (-NH2) is transferred from an alpha-amino acid to an alpha-keto acid, resulting in the formation of a new alpha-amino acid and a new alpha-keto acid.

In this case, α-ketoglutarate acts as the alpha-keto acid, while aspartate acts as the alpha-amino acid. The amino group from aspartate is transferred to α-ketoglutarate, forming glutamate as the new alpha-amino acid and regenerating α-ketoglutarate as the new alpha-keto acid. This reaction is catalyzed by transaminase enzymes. The correct answer is:D) α-ketoglutarate/aspartate.

Learn more about  transamination reactions here ;

https://brainly.com/question/13063782

#SPJ11

Draw one Lewis structure for each of the following molecules, Determine the molecular shape (for example: trigonal pyramid). Indicate bond angles:
A) NCl3 B) COCI2 C) SF6 D) Tecl4

Answers

A) [tex]NCl_3[/tex]: N with three Cl atoms attached to it in a trigonal pyramid shape and Approximately 107 degrees.

B) [tex]COCl_2[/tex]:C double bonded to O and single bonded to two Cl atoms in a trigonal planar shape and Approximately 120 degrees.

C) [tex]SF_6[/tex]:S with six F atoms attached to it in an octahedral shape and 90 degrees.

D) [tex]TeCl_4[/tex]:  Te with four Cl atoms attached to it in a tetrahedral shape and Approximately 109.5 degrees.

What is Lewis structure?

Lewis structure, also known as Lewis dot structure or electron dot structure, is a representation of a molecule or ion that shows the arrangement of atoms and their valence electrons.

A) [tex]NCl_3:[/tex]

Lewis Structure:

Cl

|

N - Cl

|

Cl

Molecular Shape: Trigonal Pyramidal Bond Angles: The bond angle between each Cl-N-Cl bond is approximately 107 degrees.

B) [tex]COCl_2:[/tex]

Lewis Structure:

Cl

|

O = C - Cl

|

Cl

Molecular Shape: Trigonal Planar Bond Angles: The bond angle between each Cl-C-Cl bond is approximately 120 degrees.

C) [tex]SF_6:[/tex]

Lewis Structure:

F F

| |

F - S - F

| |

F F

Molecular Shape: Octahedral Bond Angles: The bond angle between each F-S-F bond is approximately 90 degrees.

D)[tex]TeCl_4:[/tex]

Lewis Structure:

Cl

|

Cl - Te - Cl

|

Cl

Molecular Shape: Tetrahedral Bond Angles: The bond angle between each Cl-Te-Cl bond is approximately 109.5 degrees.

To learn more about Lewis structure  from the given link

brainly.com/question/20300458

#SPJ4

what wavelength photon would be required to ionize a hydrogen atom in the ground state and give the ejected electron a kinetic energy of 14.5 ev ?

Answers

A photon with a wavelength of 91.2 nm would be required to ionize a hydrogen atom in the ground state and give the ejected electron a kinetic energy of 14.5 eV.

To ionize a hydrogen atom in the ground state and give the ejected electron a kinetic energy of 14.5 eV, the wavelength of the required photon can be calculated using the equation:
E = hc/λ - Eionization
Where E is the energy of the photon, h is Planck's constant, c is the speed of light, λ is the wavelength of the photon, and Eionization is the ionization energy of hydrogen (13.6 eV).
Plugging in the values, we get:
14.5 eV = hc/λ - 13.6 eV
Solving for λ, we get:
λ = 91.2 nm
Therefore, a photon with a wavelength of 91.2 nm would be required to ionize a hydrogen atom in the ground state and give the ejected electron a kinetic energy of 14.5 eV.

To know more about wavelength visit:

https://brainly.com/question/31143857

#SPJ11

what we refer to as rust is actually: select the correct answer below: a) iron atoms b) iron(iii) ions c) iron(iii) oxide d) hydrated iron(iii) oxide

Answers

We refer to rust as actually: d) hydrated iron(III) oxide. This compound forms when iron atoms react with water and oxygen, creating a reddish-brown substance commonly found on the surface of iron materials.

We refer to rust as iron(iii) oxide, which is a compound formed by the reaction of iron atoms with oxygen and moisture in the air. This compound is commonly known as rust and is a reddish-brown color. Rust is formed when iron atoms lose electrons and combine with oxygen to form iron(iii) ions, which then react with water to form hydrated iron(iii) oxide. Rust is a common problem for metal objects that are exposed to moisture and air, as it can weaken and corrode the metal over time. The rust can be prevented and corrected using various methods, including coatings and treatments that protect the metal from exposure to moisture and oxygen.
To know more about hydrated iron(III) oxide visit:

https://brainly.com/question/11202174

#SPJ11

Which of the following is not an example of a mechanical wave?

Responses

sound wave
sound wave

light wave
light wave

ocean wave
ocean wave

seismic wave

Answers

Answer:

The correct answer is: Light wave

Explanation:

Mechanical waves are waves that require a medium to propagate. They transfer energy through the oscillation or vibration of particles in the medium. Examples of mechanical waves include sound waves, ocean waves, and seismic waves.

Sound waves are mechanical waves because they travel through a medium, such as air, water, or solids, by causing particles in the medium to vibrate. These vibrations create compressions and rarefactions that propagate as sound.

Ocean waves are also mechanical waves because they result from the transfer of energy through the movement of water particles. The wind provides the energy to create disturbances on the surface of the water, causing the waves to propagate.

Seismic waves are mechanical waves that occur during earthquakes. They result from the release of energy from the Earth's crust, causing vibrations to travel through the ground. These waves can be divided into two main types: P-waves (primary waves) and S-waves (secondary waves), both of which require a medium to propagate.

On the other hand, light waves are not mechanical waves. They are electromagnetic waves that can travel through a vacuum, such as space, where there is no medium. Light waves do not require particles in a medium to propagate but can still travel through various mediums like air, water, or transparent solids.

Therefore, out of the options provided, "light wave" is the example that is not a mechanical wave.

You are provided with a 0.571 M aqueous solution of potassium chloride, KCl (aq). What volume (in mL) of this solution contains 2.43 g of KCl dissolved in it (MM=74.55 g/mol)?
a. 38.9 mL
b. 18.6 mL
c. 57.1 mL
d. 17.5 mL

Answers

The volume of the 0.571 M aqueous solution of KCl that contains 2.43 g of KCl is approximately 57.1 m

To determine the volume of the 0.571 M aqueous solution of potassium chloride (KCl) that contains 2.43 g of KCl, we can use the equation:

moles of solute = mass of solute / molar mass of solute

First, calculate the number of moles of KCl:

moles of KCl = 2.43 g / 74.55 g/mol = 0.0326 mol

Next, we can use the formula for molarity to find the volume:

Molarity (M) = moles of solute / volume of solution (in liters)

0.571 M = 0.0326 mol / volume of solution (in liters)

Rearranging the equation, we have:

volume of solution (in liters) = 0.0326 mol / 0.571 M = 0.057 L

Finally, we convert the volume from liters to milliliters:

volume of solution (in mL) = 0.057 L * 1000 mL/L = 57.1 mL

Know more about aqueous solution here:

https://brainly.com/question/1326368

#SPJ11

2 mols of benezene are mixed with 3 moles of toluene what is the mol fraction of benzene in the vapor

Answers

To calculate the mol fraction of benzene in the vapor, we first need to calculate the total moles of the mixture. Since 2 moles of benzene are mixed with 3 moles of toluene, the total moles of the mixture will be 2 + 3 = 5 moles.

Next, we need to calculate the moles of benzene in the vapor. This can be done using Raoult's Law, which states that the partial pressure of a component in a mixture is equal to its mole fraction times its vapor pressure at that temperature.
Assuming that the vapor pressure of benzene and toluene are known at the given temperature, we can use Raoult's Law to calculate the partial pressure of benzene in the vapor.
Once we have the partial pressure of benzene, we can use Dalton's Law of Partial Pressures to calculate the total pressure of the vapor.
Finally, we can calculate the mol fraction of benzene in the vapor by dividing the partial pressure of benzene by the total pressure of the vapor.
Since the question does not provide information about the temperature or vapor pressure of the components, it is not possible to provide a numerical answer. However, the above steps can be followed to calculate the mol fraction of benzene in the vapor under given conditions.
We need to use Raoult's Law and Dalton's Law of Partial Pressures to calculate the mol fraction of benzene in the vapor. However, the specific numerical answer will depend on the temperature and vapor pressure of the components.

To know more about Benzene visit:

https://brainly.com/question/31837011

#SPJ11

which sentence is preferable?select an answer:solvent use will not exceed 5,000 gallons per month.solvents should be limited in use to 5,000 gallons per month.solvent usage should be optimized at 5,000 gallons per month.solvent usage will be restricted if 5,000 gallons are needed in any given month.

Answers

The sentence "Solvent use will not exceed 5,000 gallons per month" is the most preferable.

It is clear and direct, and avoids any ambiguity or confusion. With a word count of only 9 words, it is also concise and to the point. The other sentences could be interpreted in different ways, and may not convey the same level of certainty and clarity as the first option. Therefore, when communicating important information about solvent use, it is best to keep it simple and straightforward. The preferable sentence among the given options is: "Solvent use will not exceed 5,000 gallons per month." This sentence is clear, concise, and provides a specific limit for solvent usage. The other sentences are less direct or imply a different meaning, such as suggesting optimization or imposing restrictions only if the specified amount is needed. By stating that solvent use will not exceed a certain amount, it establishes a firm boundary and ensures that the intended message is effectively communicated.

To know more about Solvent visit:

https://brainly.com/question/11985826

#SPJ11

waft the aspirin crystals carefully, can you detect an odor? what is it?

Answers

When wafting aspirin crystals, you may detect a faint odor resembling vinegar or acetic acid.

Aspirin, chemically known as acetylsalicylic acid, is derived from salicylic acid, which naturally occurs in plants like willow bark. When aspirin crystals are exposed to air, a process known as hydrolysis occurs, converting some of the acetylsalicylic acid into salicylic acid and acetic acid. The acetic acid is responsible for the vinegar-like odor that can be detected when wafting the aspirin crystals.

The hydrolysis reaction can be represented as follows:

[tex]\[\text{Acetylsalicylic acid} \rightleftharpoons \text{Salicylic acid} + \text{Acetic acid}\][/tex]

The released acetic acid molecules have a distinct odor that resembles vinegar. However, it is important to note that the odor may not be very strong or easily detectable, as it depends on factors such as the concentration of the crystals and the sensitivity of the individual's sense of smell.

To learn more about aspirin refer:

https://brainly.com/question/28709484

#SPJ11

state the properties of a buffer solution and the key components of such a solution. (2 points)

Answers

A buffer solution is a solution that resists changes in pH when small amounts of an acid or base are added. The properties of a buffer solution include the ability to maintain a relatively constant pH, even when acids or bases are added.

Buffers typically have a pH range that is close to the pKa value of the weak acid in the buffer. This means that the buffer is most effective at buffering the pH when the pH is near the pKa value. The key components of a buffer solution are a weak acid and its conjugate base or a weak base and its conjugate acid. The weak acid or base acts as a buffer, and its conjugate base or acid acts as a neutralizing agent to counteract any changes in pH caused by the addition of acid or base. The buffer components must be present in roughly equal concentrations to maintain the buffer's effectiveness. Other important properties of a buffer solution include the capacity to absorb small amounts of acid or base without significant changes in pH, and the ability to maintain a relatively constant pH over a wide range of temperatures.

To know more about buffer solutions

https://brainly.com/question/8676275

#SPJ11

now let's look at what happens when we move to the second shelf, n_2 = 2n 2 =2. what is the wavelength of light emitted when moving from the 3^{rd}3 rd and 2^{nd}2 nd energy levels.
486 nm 95 nm 1875 nm 656 nm

Answers

The wavelength of light emitted when moving from the 3rd to the 2nd energy levels is 486 nm.

In atomic systems, when an electron transitions from a higher energy level to a lower energy level, it releases energy in the form of electromagnetic radiation. This radiation corresponds to a specific wavelength of light. The energy difference between the 3rd and 2nd energy levels can be calculated using the equation:

[tex]\(\Delta E = E_3 - E_2 = \frac{{-13.6 \, \text{{eV}}}}{{n_3^2}} - \frac{{-13.6 \, \text{{eV}}}}{{n_2^2}}\)[/tex]

, where [tex]\(n_3\)[/tex] and [tex]\(n_2\)[/tex] are the principal quantum numbers of the energy levels. Given that [tex]\(n_3 = 3\)[/tex] and [tex]\(n_2 = 2\)[/tex], we can substitute these values into the equation to find the energy difference. Once the energy difference is known, we can use the equation [tex]\(E = \frac{{hc}}{{\lambda}}\)[/tex] to calculate the corresponding wavelength of light emitted. By rearranging the equation, we can solve for [tex]\(\lambda\)[/tex], which gives us [tex]\(\lambda = \frac{{hc}}{{\Delta E}}\)[/tex]. Substituting the known values of [tex]\(h\)[/tex] (Planck's constant) and c (speed of light) into the equation and plugging in the energy difference, we find that the wavelength of light emitted is approximately 486 nm.

To learn more about wavelength refer:

https://brainly.com/question/28995449

#SPJ11

for a certain chemical reaction, the equilibrium constant at . calculate the standard gibbs free energy of your answer to significant digits.

Answers

The standard Gibbs free energy of a chemical reaction can be calculated using the equilibrium constant. In this case, with an equilibrium constant of [tex]9.4*10^(^-^1^1)[/tex] at [tex]10.0 ^0C[/tex], the standard Gibbs free energy is approximately 200 J/mol.

The standard Gibbs free energy change (Δ[tex]G^0[/tex]) of a reaction can be calculated using the equilibrium constant (K) and the formula Δ[tex]G^0[/tex] = -RTln(K), where R is the gas constant (8.314 J/(mol·K)) and T is the temperature in Kelvin. To convert the given temperature of [tex]10.0 ^0C[/tex] to Kelvin, we add 273.15 to it, resulting in 283.15 K.

Plugging the values into the formula, we have:

[tex]\Delta G^0 = - (8.314 J/(mol.K)) * ln(9.4*10^(^-^1^1^))\\\Delta G^0 = - (8.314 J/(mol.K)) * (-24.660)\\\Delta G^0= 204.67 J/mol[/tex]

Rounding the answer to 2 significant digits, the standard Gibbs free energy of the reaction is approximately 200 J/mol. This value represents the energy change associated with the reaction under standard conditions (1 atm pressure, 1 M concentrations) at [tex]10.0 ^0C[/tex].

Learn more about Gibbs free energy here:

https://brainly.com/question/29753420

#SPJ11

The complete question is:

for a particular chemical reaction, the equilibrium constant K - [tex]9.4*10^(^-^1^1)[/tex] at [tex]10.0 ^0C[/tex]. Calculate the standard Gibbs free energy of the reaction. Round your answer to 2 significant digits.

Where is OH on the IR spectrum?

Answers

The hydroxyl (OH) functional group typically appears as a broad peak on the infrared (IR) spectrum.

The exact location of the peak depends on the specific compound and the environment of the OH group. In general, the OH stretch vibration occurs in the range of 3200-3600 cm^-1. This broad peak is due to the hydrogen bonding interactions that can occur between OH groups and neighboring molecules. The intensity and shape of the peak can provide additional information about the nature of the OH group, such as whether it is involved in intermolecular or intramolecular hydrogen bonding. Overall, the presence of an OH peak in the IR spectrum is indicative of the presence of an alcohol or hydroxyl-containing functional group in the molecule.

Know more about hydroxyl (OH) here:

https://brainly.com/question/30895270

#SPJ11

HCN (and H2) can be produced by reacting CH4 with N2 What is the balanced chemical equation for this reaction. O ( 2 CH4 + N2 + 2 HCN+ 3H2 O CHA + N + 2 HCN + H2 O CH4 + N2 HCN + H2
O 2 CH4 +N, > 2 HCN + 2 H2,

Answers

The balanced chemical equation for the reaction between CH4 and N2 to produce HCN and H2 is 2 CH4 + N2 → 2 HCN + 2 H2. This reaction involves the breaking of chemical bonds in CH4 and N2 and the formation of new bonds in HCN and H2.

The balanced equation shows that 2 molecules of CH4 react with 1 molecule of N2 to produce 2 molecules of HCN and 2 molecules of H2. It is important to note that balancing the chemical equation is necessary to ensure that the reactants and products are in the correct proportions. The balanced equation also helps in calculating the amount of reactants needed and products produced in the reaction. Overall, the reaction between CH4 and N2 to produce HCN and H2 is an example of a chemical reaction.

To know more about Reaction visit:

https://brainly.com/question/30344509

#SPJ11

Other Questions
Evaluate the indefinite integral. (Use capital for the constant of integration.) 1x57-x? dx Show every step of your work on paper. a boat, costing $110,000 and uninsured, was wrecked the very first day it was used. this boat can either be disposed for $13,000 cash and be replaced with a similar boat costing $113,000, or rebuilt for $98,000 and be brand new as far as operating characteristics and looks are concerned. a relevant cost analysis of the decision to replace the boat shows:A. A $21,000 cost advantage associated with the decision to fix the old boat.B. A cost equivalence between the two decision options.C. An $11,000 net advantage associated with the decision to fix the old boat.D. A $1,000 cost advantage associated with the decision to fix the old boat Choose the triple integral that evaluates the volume of the solid that lies inside the sphere x + y2 + z = 1 and outside the cone z = 7x?+y? Select one: OA . SAS Spin()dpddo S" 1" [ p*sin()dpdde 5*1" ["psin(a)pdedo Sport OC 0 OD OE None of the choices which information indicates the nurse has a corret understanding of the pathophysiologic processes important in cell injury An intrusive rock forms whena.rocks are weatheredb.magma cools undergroundc.magma erupts and cools on the surfaced.sediments are lithified For a chemical reaction to be spontaneous only at high temperatures, which of the following conditions must be met?A. S > 0, H > 0B. S < 0, H > 0C. S < 0, H < 0D. S > 0, H < 0E. G > 0 what are the three pressures driving sustainable mis infrastructures Find || V || . v= -91 -2+ 6k IV- (Simplify your answer. Type an exact value, using fractions and radicals as needed.) Find | V || v=3i - 7j + 3k IV-(Type an exact answer, using radicals as needed.) one strength of cognitive behavioral therapy group counseling is that Why is biodiversity necessary for the sustainability of an ecosystem? Use what you have learned about ecosystem services to help explain. Calculate the derivative of the following function. 6 y= (x - 9x+2) + 2 X dy = dx 50 Points! Multiple choice geometry question. Photo attached. Thank you! Energy that comes from the sunsolar energyis clean. It does not cause pollution the way energy from fossil fuels (like gas and oil) does. However, solar energy must be collected before it can be used. The instruments used to collect solar energy are quite costly.This paragraph states that solar energy ________.A) causes a lot of pollutionB) is expensive to collectC) is one kind of fossil fuelD) is a cheap way to get energy . Suppose a particle moves back and forth along a straight line with velocity v(t) , measured in feet per second, and acceleration aft) 120 a. What is the meaning of La muce? v(t) dt? 120 b. What is the meaning of (Odt? 60 120 c. What is the meaning of a(t) dt ? 60 in the lean perspective on inventory, which of the following statements is often true when a process is running smoothly? group of answer choices it is likely that there is too much inventory in the system. it is likely that there is too little inventory in the system. it is likely that workers are overutilized. it is likely that workers are underutilized. Which of the following information is needed to prepare a flexible budget?(a) Actual units sold(b) Actual variable cost(c) Actual selling price per unit(d) Actual fixed cost. suppose 82% of all students at a large university own a computer. if 6 students are selected independently of each other, what is the probability that exactly 4 of them owns a computer? QUESTION 241 POINT Suppose that the piecewise function f is defined by f(x)= 3x +4. -2x + 5x-2, x>1 Determine which of the following statements are true. Select the correct answer below. Of(x) is Suggestions for making self-monitoring effective include:All of the options are correct.Self-monitor only two aspects of the target behaviorSometimes provide supplementary cues or prompts as crutchesSelf-monitor the most salient dimension of the behaviorSelf-monitor early and often Please help. It's incomplete, I've spent a long while trying to locate what I'm missing and need new eyes to check - attached.After the success of the companys first two months, Santana Rey continues to operate Business Solutions. The November 30, 2021, unadjusted trial balance of Business Solutions (reflecting its transactions for October and November of 2021) follows.Number Account Title Debit Credit101 Cash $ 38,264 106 Accounts receivable 12,618 126 Computer supplies 2,545 128 Prepaid insurance 2,220 131 Prepaid rent 3,300 163 Office equipment 8,000 164 Accumulated depreciationOffice equipment $ 0167 Computer equipment 20,000 168 Accumulated depreciationComputer equipment 0201 Accounts payable 0210 Wages payable 0236 Unearned computer services revenue 0307 Common stock 73,000318 Retained earnings 0319 Dividends 5,600 403 Computer services revenue 25,659612 Depreciation expenseOffice equipment 0 613 Depreciation expenseComputer equipment 0 623 Wages expense 2,625 637 Insurance expense 0 640 Rent expense 0 652 Computer supplies expense 0 655 Advertising expense 1,728 676 Mileage expense 704 677 Miscellaneous expenses 250 684 Repairs expenseComputer 805 901 Income summary 0 Totals $ 98,659 $ 98,659Business Solutions had the following transactions and events in December 2021.December 2 Paid $1,025 cash to Hillside Mall for Business Solutions's share of mall advertising costs.December 3 Paid $500 cash for minor repairs to the companys computer.December 4 Received $3,950 cash from Alexs Engineering Company for the receivable from November.December 10 Paid cash to Lyn Addie for six days of work at the rate of $125 per day.December 14 Notified by Alexs Engineering Company that Business Solutions's bid of $7,000 on a proposed project has been accepted. Alexs paid a $1,500 cash advance to Business Solutions.December 15 Purchased $1,100 of computer supplies on credit from Harris Office Products.December 16 Sent a reminder to Gomez Company to pay the fee for services recorded on November 8.December 20 Completed a project for Liu Corporation and received $5,625 cash.December 22-26 Took the week off for the holidays.December 28 Received $3,000 cash from Gomez Company on its receivable.December 29 Reimbursed S. Rey for business automobile mileage (600 miles at $0.32 per mile).December 31 Paid $1,500 cash for dividends.The following additional facts are collected for use in making adjusting entries prior to preparing financial statements for the companys first three months.The December 31 inventory count of computer supplies shows $580 still available.Three months have expired since the 12-month insurance premium was paid in advance.As of December 31, Lyn Addie has not been paid for four days of work at $125 per day.The computer system, acquired on October 1, is expected to have a four-year life with no salvage value.The office equipment, acquired on October 1, is expected to have a five-year life with no salvage value.Three of the four months' prepaid rent have expired.Required:1. Prepare journal entries to record each of the December transactions. Post those entries to the accounts in the ledger.2-a. Prepare adjusting entries to reflect a through f.2-b. Post the journal entries to record each of the December transactions, adjusting entries to the accounts in the ledger.3. Prepare an adjusted trial balance as of December 31, 2021.4. Prepare an income statement for the three months ended December 31, 2021.5. Prepare a statement of retained earnings for the three months ended December 31, 2021.6. Prepare a classified balance sheet as of December 31, 2021.7. Record the necessary closing entries as of December 31, 2021.8. Prepare a post-closing trial balance as of December 31, 2021.