please solve
Evaluate (F-dr along the straight line segment C from P to Q. F(x,y)=-6x i +5yj.P(-3,2), Q (-5,5)

Answers

Answer 1

To evaluate the line integral of F • dr along the straight line segment C from P to Q, where F(x, y) = -6x i + 5y j and P(-3, 2), Q(-5, 5), we need to parameterize the line segment C.

The parameterization of a line segment from P to Q can be written as r(t) = P + t(Q - P), where t ranges from 0 to 1.

In this case, P = (-3, 2) and Q = (-5, 5), so the parameterization becomes r(t) = (-3, 2) + t[(-5, 5) - (-3, 2)].

Simplifying, we have r(t) = (-3, 2) + t(-2, 3) = (-3 - 2t, 2 + 3t).

Now, we can calculate the differential dr as dr = r'(t) dt, where r'(t) is the derivative of r(t) with respect to t.

Taking the derivative of r(t), we get r'(t) = (-2, 3).

Therefore, dr = (-2, 3) dt.

Next, we evaluate F • dr along the line segment C by substituting the values of F and dr:

F • dr = (-6x, 5y) • (-2, 3) dt.

Substituting x = -3 - 2t and y = 2 + 3t, we have:

F • dr = [-6(-3 - 2t) + 5(2 + 3t)] • (-2, 3) dt.

Simplifying the expression, we get:

F • dr = (12t - 9) • (-2, 3) dt.

Finally, we integrate the scalar function (12t - 9) with respect to t over the range from 0 to 1:

∫(12t - 9) dt = [6t^2 - 9t] evaluated from 0 to 1.

Substituting the upper and lower limits, we have:

[6(1)^2 - 9(1)] - [6(0)^2 - 9(0)] = 6 - 9 = -3.

Therefore, the value of the line integral F • dr along the line segment C from P to Q is -3.

To learn more about parameterize the line click here: brainly.com/question/31964460

#SPJ11


Related Questions

Find the area of the kite.

Answers

Answer:

18m²

Step-by-step explanation:

area = areas of top left triangle + bottom left + top right + bottom right

= (1/2 X 2 X 3) + (1/2 X 2 X 3) + (1/2 X 3 X 4) + (1/2 X 3 X 4)

= 3 + 3 + 6 + 6

= 18 m²

Use the formula for the sum of a geometric series to find the sum. (Use symbolic notation and fractions where needed. Enter the symbol oo if the series diverges.) M8 12(-2)" – 71 8" = 00 n=0 Incorre

Answers

The sum of the given geometric series, M = Σ(12(-2)^n), where n starts from 0, is ∞ (infinity).


The given series is M = Σ(12(-2)^n), where n starts from 0.

To find the sum of the geometric series, we can use the formula:
M = a * (1 - r^N) / (1 - r)
where M is the sum, a is the first term, r is the common ratio, and N is the number of terms. In this case, a = 12, r = -2, and N approaches infinity as it's not specified.

Since the absolute value of the common ratio (|-2| = 2) is greater than 1, the series will diverge. Therefore, the sum of the series is ∞ (infinity).

To learn more about geometric series visit : https://brainly.com/question/24643676'

#SPJ11

52 cards in the deck of cards which are divided into 4 different
colors. When randomly selecting five cards, what is the probability
that you get all of them of the same colour?

Answers

the probability of getting all five cards of the same color (in this case, all hearts) is approximately 0.000494 or 0.0494%.

To calculate the probability of getting all five cards of the same color, we need to consider the number of favorable outcomes (getting five cards of the same color) and the total number of possible outcomes (all possible combinations of five cards).

There are four different colors in the deck: hearts, diamonds, clubs, and spades.

assume we want to calculate the probability of getting all five cards of hearts.

Favorable outcomes: There are 13 hearts in the deck, so we need to choose 5 hearts out of the 13 available.

Possible outcomes: We need to choose 5 cards out of the total 52 cards in the deck.

The probability can be calculated as:

P(5 cards of hearts) = (Number of favorable outcomes) / (Total number of possible outcomes)                     = (Number of ways to choose 5 hearts) / (Number of ways to choose 5 cards from 52)

Number of ways to choose 5 hearts = C(13, 5) = 13! / (5!(13-5)!) = 1287

Number of ways to choose 5 cards from 52 = C(52, 5) = 52! / (5!(52-5)!) = 2598960

P(5 cards of hearts) = 1287 / 2598960 ≈ 0.000494

Learn more about probability here:

https://brainly.com/question/32117953

#SPJ11

Find the solution of the system of equations.



7

=
−x−7y=



41
−41


6

=
x−6y=



37
−37

Answers

The required values x is -1 and y is 6.

Given that the system of equations are ;

Equation 1: -x-7y = -41 and Equation 2: x-6y = -37.

To find the values of x and y, consider two equations and  solve by elimination method. That states cancel any one variable either by adding or  subtracting, then the other variable can be found by substituting the one variable in any one equation.

Add equation 1 and equation 2 gives,

[tex]\begin{array}{cccc}-x&-7y&=-41\\x&-6y&=-37\\+&-----&--------\\0&-13y&=-78\end{array}[/tex]

That implies, -13y = -78

Divide by -13 on both sides gives,

y = 6.

Substitute the value y = 6 in the equation 2 gives,

x - 6 (6) = -37

On multiplying gives,

x - 36 = -37

On adding by 36 on both sides gives,

x = -1.

Hence, the required values x is -1 and y is 6.

Learn more about system of equation, click here:

https://brainly.com/question/29520123

#SPJ1

consider the cosine function cos : r → r. decide whether this function is injective and whether it is surjective. what if it had been defined as cos : r → [−1,1]?

Answers

The cosine function, cos: R → R, is not injective but is surjective. If the function had been defined as cos: R → [-1, 1], it would still not be injective, but it would be surjective.

The cosine function, cos: R → R, is not injective because it fails the horizontal line test. The cosine function oscillates between values of -1 and 1 over the entire real number line, repeating its values after every period of 2π. This means that multiple input values (angles) can produce the same output value (cosine). Therefore, there exist different real numbers that map to the same value under the cosine function, making it not injective.

However, the cosine function is surjective because it takes on every value in the range of real numbers. For any given real number y, there exists an input value x such that cos(x) = y. This is because the cosine function has a range of (-1, 1), and it covers all values in that range as it oscillates.

If the cosine function had been defined as cos: R → [-1, 1], the function would still not be injective because it would still fail the horizontal line test. However, it would remain surjective because the range of the function matches the specified interval [-1, 1], and every value within that interval can be reached by the cosine function.

Learn more about surjective here:

https://brainly.com/question/13656067

#SPJ11

Question Consider the following double integral 1 = 2₂ dy dx. By converting I into an equivalent double integral in polar coordinates, we obtain: 1 = f for dr de 1 = 2² dr do This option None of th

Answers

The conversion of the given double integral [tex]1 = 2_2 dy dx[/tex] does not result in the option "[tex]1 = f[/tex] for [tex]dr d\theta[/tex]" or "[tex]1 = 2^2 dr d\theta[/tex]". The correct option is "None of these".

To convert a double integral from rectangular coordinates (dy dx) to polar coordinates, we use the transformation formula dx dy = r dr dθ. Applying this formula to the given integral, we have:

[tex]1 = 2_2 dy dx\\= 2_2 dy dx\\= 2_2 r dr d\theta[/tex] [Using the conversion formula]

However, this does not match either of the options given. The correct expression for the equivalent double integral in polar coordinates is 1 = 2₂ r dr dθ. This indicates that the integration is performed over the range of values for r and θ that define the desired region.

Therefore, the given options do not correctly represent the equivalent double integral in polar coordinates for the given integral. The correct answer is "None of these".

Learn more about double integral here:

https://brainly.com/question/27360126

#SPJ11

let H be the set of all polynomials of the form P(t)=a+bt^2 where a and b are in R and b>a. determine whether H is a vector space.if it is not a vector space determine which of the following properties it fails to satisfy. A: contains zero vector B:closed inder vector addition C: closed under multiplication by scalars A) His not a vector space; does not contain zero vector B) His not a vector space; not closed under multiplication by scalars and does not contain zero vector C) H is not a vector space; not closed under vector addition D) H is not a vector space; not closed under multiplication by scalars.

Answers

The set H of polynomials of the form P(t) = a + bt², where a and b are real numbers with b > a, is not a vector space. It fails to satisfy property C: it is not closed under vector addition.

In order for a set to be a vector space, it must satisfy several properties: containing a zero vector, being closed under vector addition, and being closed under multiplication by scalars. Let's examine each property for the set H:

A) Contains zero vector: The zero vector in this case would be the polynomial P(t) = 0 + 0t² = 0. However, this polynomial does not have the form a + bt² with b > a, as required by H. Therefore, H does not contain a zero vector.

B) Closed under vector addition: To check this property, we take two arbitrary polynomials P(t) = a + bt² and Q(t) = c + dt² from H and try to add them. The sum of these polynomials is (a + c) + (b + d)t². However, it is possible to choose values of a, b, c, and d such that (b + d) is less than (a + c), violating the condition b > a. Hence, H is not closed under vector addition.

C) Closed under multiplication by scalars: Multiplying a polynomial P(t) = a + bt² from H by a scalar k results in (ka) + (kb)t². Since a and b can be any real numbers, there are no restrictions on their values that would prevent the resulting polynomial from being in H. Therefore, H is closed under multiplication by scalars.

In conclusion, the set H fails to satisfy property C: it is not closed under vector addition. Therefore, H is not a vector space.

Learn more about addition here: https://brainly.com/question/29464370

#SPJ11

The Point on the plane 2x + 3y - z=1 that is closest to the point (1.1.-2) is

Answers

the point on the plane 2x + 3y - z = 1 that is closest to the point (1, 1, -2) is (1 - (3/2)y, y, 1).

The values of x and y may vary, but z is always equal to 1.

To find the point on the plane 2x + 3y - z = 1 that is closest to the point (1, 1, -2), we can use the concept of orthogonal projection.

The vector normal to the plane is given by the coefficients of x, y, and z in the equation.

this case, the normal vector is (2, 3, -1).

Now, let's consider a vector from the point on the plane (x, y, z) to the point (1, 1, -2). This vector can be represented as (1 - x, 1 - y, -2 - z).

Since the normal vector is orthogonal (perpendicular) to any vector on the plane, the dot product of the normal vector and the vector from the point on the plane to (1, 1, -2) should be zero.

(2, 3, -1) • (1 - x, 1 - y, -2 - z) = 0

Expanding the dot product:

2(1 - x) + 3(1 - y) - (2 + z) = 0

Simplifying the equation:

2 - 2x + 3 - 3y - 2 - z = 0

-2x - 3y - z = -3

We also have the equation of the plane given as 2x + 3y - z = 1. We can solve this system of equations to find the values of x, y, and z.

Solving the system of equations:

-2x - 3y - z = -3

2x + 3y - z = 1

Adding the two equations together:

-2x - 3y - z + 2x + 3y - z = -3 + 1

-2z = -2

z = 1

Substituting z = 1 into one of the equations:

2x + 3y - 1 = 1

2x + 3y = 2

Let's solve for x in terms of y:

2x = 2 - 3y

x = 1 - (3/2)y

Learn more about vector here:

https://brainly.com/question/24256726

#SPJ11

Question * Let D be the region bounded below by the cone z = √x² + y² and above by the sphere x² + y² + z² = 25. Then the z-limits of integration to find the volume of D, using rectangular coor

Answers

To find the volume of the region D bounded below by the cone [tex]z=\sqrt{x^2+y^2}[/tex] and above by the sphere [tex]x^2+y^2+z^2=25[/tex], using rectangular coordinates, the z-limits of integration need to be determined. The z-limits depend on the intersection points of the cone and the sphere.

To determine the z-limits of integration for finding the volume of region D, we need to find the intersection points of the cone [tex]z=\sqrt{x^2+y^2}[/tex] and the sphere [tex]x^2+y^2+z^2=25[/tex]. Setting these equations equal to each other, we have [tex]\sqrt{x^2+y^2}=\sqrt{25-x^2-y^2}[/tex]. Squaring both sides, we get [tex]x^2+y^2=25-x^2-y^2[/tex]. Simplifying, we obtain [tex]2x^2+2y^2=25[/tex]. Rearranging, we have [tex]x^2+y^2=12.5[/tex]. This equation represents the intersection curve between the cone and the sphere. By examining this curve, we can determine the z-limits of integration.

Since the cone is defined as [tex]z=\sqrt{x^2+y^2}[/tex], the lower z-limit is given by z = 0. For the upper z-limit, we need to find the z-coordinate of the intersection curve between the cone and the sphere. By substituting [tex]x^2+y^2=12.5[/tex] into the equation of the cone, we have [tex]z=\sqrt{12.5}[/tex]. Therefore, the upper z-limit is [tex]z=\sqrt{12.5}[/tex]. Hence, the z-limits of integration for finding the volume of region D using rectangular coordinates are 0 to [tex]\sqrt{12.5}[/tex].

Learn more about integration here:

https://brainly.com/question/31744185

#SPJ11


II WILL GIVE GOOD RATE FOR GOOD ANSWER
: Question 2 Second Order Homogeneous Equation. Consider the differential equation & : x"(t) – 4x'(t) + 4x(t) = 0. (i) Find the solution of the differential equation E. (ii) Assume x(0) = 1 and x'(0

Answers

i. The general solution of the differential equation is given by:

[tex]x(t) = C_1e^{(2t)} + C_2te^{(2t)[/tex]

ii. The solution of the differential equation E: x"(t) - 4x'(t) + 4x(t) = 0 is x(t) = [tex]e^{(2t)[/tex].

What is homogeneous equation?

If f x, y is a homogeneous function of degree 0, then d y d x = f x, y is said to be a homogeneous differential equation. As opposed to this, the function f x, y is homogeneous and of degree n if and only if any non-zero constant, f x, y = n f x, y

To solve the given second-order linear homogeneous differential equation E: x"(t) - 4x'(t) + 4x(t) = 0, let's find the solution using the characteristic equation method:

(i) Finding the general solution of the differential equation:

Assume a solution of the form [tex]x(t) = e^{(rt)}[/tex], where r is a constant. Substituting this into the differential equation, we have:

[tex]r^2e^{(rt)} - 4re^{(rt)} + 4e^{(rt)} = 0[/tex]

Dividing the equation by [tex]e^{(rt)[/tex] (assuming it is non-zero), we get:

[tex]r^2 - 4r + 4 = 0[/tex]

This is a quadratic equation that can be factored as:

(r - 2)(r - 2) = 0

So, we have a repeated root r = 2.

The general solution of the differential equation is given by:

[tex]x(t) = C_1e^{(2t)} + C_2te^{(2t)[/tex]

where [tex]C_1[/tex] and [tex]C_2[/tex] are constants to be determined.

(ii) Assuming x(0) = 1 and x'(0) = 2:

We are given initial conditions x(0) = 1 and x'(0) = 2. Substituting these values into the general solution, we can find the specific solution of the differential equation associated with these conditions.

At t = 0:

[tex]x(0) = C_1e^{(2*0)} + C_2*0*e^{(2*0)} = C_1 = 1[/tex]

At t = 0:

[tex]x'(0) = 2C_1e^{(2*0)} + C_2(1)e^{(2*0)} = 2C_1 + C_2 = 2[/tex]

From the first equation, we have [tex]C_1 = 1[/tex]. Substituting this into the second equation, we get:

[tex]2(1) + C_2 = 2[/tex]

[tex]2 + C_2 = 2[/tex]

[tex]C_2 = 0[/tex]

Therefore, the specific solution of the differential equation associated with the given initial conditions is:

x(t) = [tex]e^{(2t)[/tex]

So, the solution of the differential equation E: x"(t) - 4x'(t) + 4x(t) = 0 is x(t) = [tex]e^{(2t)[/tex].

Learn more about homogenous equation on:

https://brainly.com/question/16405202

#SPJ4

(1 point) A cylinder is inscribed in a right circular cone of height 3 and radius (at the base) equal to 6.5. What are the dimensions of such a cylinder which has maximum volume? Radius= Height =

Answers

To find the dimensions of the cylinder that has the maximum volume when inscribed in a right circular cone, we can use optimization techniques.

Let's denote the radius of the cylinder as r and the height of the cylinder as h.

The volume V of the cylinder is given by V = πr²h. We need to maximize this volume subject to the constraint that the cylinder is inscribed in the cone.

From the given information, we know that the radius of the cone at the base is 6.5 and the height of the cone is 3. We can use similar triangles to relate the dimensions of the cone and the cylinder. The height of the cylinder will be a fraction of the height of the cone, and the radius of the cylinder will be a fraction of the radius of the cone.

Let's consider the similar triangles formed by the height and radius of the cone and the height and radius of the cylinder. The ratio of the height of the cylinder to the height of the cone is the same as the ratio of the radius of the cylinder to the radius of the cone.

h/3 = r/6.5

We can solve this equation for h in terms of r:

h = (3/6.5) * r

Substituting this expression for h in the volume equation, we have:

V = πr² * [(3/6.5) * r]

V = (3π/6.5) * r³

Now, we have the volume equation in terms of a single variable r. To find the maximum volume, we can take the derivative of V with respect to r, set it equal to zero, and solve for r:

dV/dr = (9π/6.5) * r² = 0

Solving for r, we get r = 0 (which is not a valid solution) or r² = 0.722

Taking the square root of both sides, we have r = √0.722 ≈ 0.85

Now, we can substitute this value of r back into the equation for h to find the corresponding height:

h = (3/6.5) * 0.85 ≈ 0.39

Therefore, the dimensions of the cylinder with maximum volume that is inscribed in the given cone are approximately radius = 0.85 and height = 0.39.

Learn more about derivative here: brainly.com/question/29144258

#SPJ11

question 2
2) Evaluate S x arcsin x dx by using suitable technique of integration.

Answers

The evaluation of ∫x * arcsin(x) dx is (1/2) x + C, where C is the constant of integration.

To evaluate the integral ∫x * arcsin(x) dx, we can use integration by parts, which is a common technique for integrating products of functions.

Let's start by considering the product of two functions: u = arcsin(x) and dv = x dx. We can find du and v by differentiating and integrating, respectively.

du = d(arcsin(x)) = 1/sqrt(1 - x^2) dx

v = ∫x dx = (1/2) x^2

Now, we can apply the integration by parts formula:

∫u dv = uv - ∫v du

Plugging in the values we found:

∫x * arcsin(x) dx = (1/2) x^2 * arcsin(x) - ∫(1/2) x^2 * (1/sqrt(1 - x^2)) dx

Simplifying, we have:

∫x * arcsin(x) dx = (1/2) x^2 * arcsin(x) - (1/2) ∫x^2 / sqrt(1 - x^2) dx

To evaluate the remaining integral, we can use a trigonometric substitution. Let's substitute x = sin(θ), which implies dx = cos(θ) dθ:

∫x^2 / sqrt(1 - x^2) dx = (1/2) ∫sin^2(θ) / sqrt(1 - sin^2(θ)) * cos(θ) dθ

Using the trigonometric identity sin^2(θ) = 1 - cos^2(θ), we can simplify further:

∫x^2 / sqrt(1 - x^2) dx = (1/2) ∫(1 - cos^2(θ)) / sqrt(1 - (1 - cos^2(θ))) * cos(θ) dθ

= (1/2) ∫cos^2(θ) / cos(θ) dθ

= (1/2) ∫cos(θ) dθ

Integrating cos(θ) with respect to θ gives sin(θ):

∫x^2 / sqrt(1 - x^2) dx = (1/2) sin(θ) + C

Now, we need to convert back from θ to x. Since we previously substituted x = sin(θ), we can use the inverse sine function to express θ in terms of x:

sin(θ) = x

θ = arcsin(x)

Finally, substituting back:

∫x * arcsin(x) dx = (1/2) sin(θ) + C

= (1/2) x + C

Therefore, the evaluation of ∫x * arcsin(x) dx is (1/2) x + C, where C is the constant of integration.

To learn more about integration, click here:

https://brainly.com/question/31744185

#SPJ11

please use calculus 2 techniques all work.
thank you
Find the equation for the line tangent to the curve 2ey = x + y at the point (2, 0). Explain your work. Use exact forms. Do not use decimal approximations.

Answers

Simplifying the equation, we have y = 2x - 4, which is the equation of the tangent line to the curve at the point (2, 0).

To find the equation of the tangent line, we first need to find the derivative of the curve. Taking the derivative of the given equation with respect to x will give us the slope of the tangent line at any point on the curve.Differentiating the equation 2ey = x + y with respect to x using the chain rule, we get d/dx(2ey) = d/dx(x + y). The derivative of ey with respect to x can be found using the chain rule, which gives us d(ey)/dx = (d(ey)/dy) * (dy/dx) = ey * (dy/dx).

Applying the derivative to the equation, we have 2ey * (dy/dx) = 1 + 1. Simplifying, we get (dy/dx) = (2ey)/(2ey - 1).Next, we evaluate the derivative at the given point (2, 0). Substituting x = 2 and y = 0 into the derivative, we have (dy/dx) = (2e0)/(2e0 - 1) = 2/1 = 2.Now that we have the slope of the tangent line, we can use the point-slope form of a line, y - y1 = m(x - x1), where (x1, y1) is the given point (2, 0), and m is the slope 2. Plugging in the values, we get y - 0 = 2(x - 2).

Learn more about tangent line here:

https://brainly.com/question/23416900

#SPJ11

Determine the derivative for each of the following. A)y=g3x b) y-in (3x*+2x+1) C) y-esinc3x) 0) y=x²4x

Answers

To determine the derivative of y = x²-4x, we use the power rule of differentiation. The power rule states that if y = [tex]x^{n}[/tex], then dy/dx = n[tex]x^{n-1}[/tex]. Here, n=2, so that we have dy/dx = 2x⁽²⁻¹⁾ - 4 × d/dx(x) = 2x - 4 = 2(x - 2)Therefore, the derivative of y = x²-4x is 2(x - 2).

The derivative of a function is the rate of change of that function at a given point. Here are the solutions to each of the following problems:

Derivative of y = g3x

To determine the derivative of y=g3x,

first consider that 3x is the argument of g(x).

Next, let u=3x, so that y=g(u).

Using the chain rule, we have dy/du=g'(u),

and du/dx=3. Combining these, we have:

dy/dx = dy/du × du/dx = g'(u) × 3 = 3g'(3x).

Therefore, the derivative of y = g3x is 3g'(3x).

Derivative of y = in (3x×+2x+1)

To determine the derivative of y = in (3x² + 2x + 1), we will use the chain rule and derivative of the natural logarithm function. The derivative of the natural logarithm function is given by:

d/dx (in x) = 1/x,

so that we have:

d/dx (in (3x² + 2x + 1)) = (1/(3x² + 2x + 1)) × d/dx (3x² + 2x + 1)

Using the chain rule, we find d/dx (3x² + 2x + 1) = 6x + 2, so that:

d/dx (in (3x² + 2x + 1)) = (1/(3x² + 2x + 1)) × (6x + 2) = (6x + 2)/(3x² + 2x + 1)

Therefore, the derivative of y = in (3x² + 2x + 1) is (6x + 2)/(3x² + 2x + 1).

Derivative of y = esin(c3x)

To find the derivative of y = e(sin(c3x)), we use the chain rule. Using this rule, the derivative is given by:

d/dx (e(sin(c3x))) = e(sin(c3x)) × d/dx (sin(c3x))

Using the derivative of the sine function, we have:

d/dx (sin(c3x)) = c3cos(c3x)

Therefore, the derivative of y = e sin(c3x) is given by:

d/dx (e(sin(c3x))) = e(sin(c3x)) × d/dx (sin(c3x))

= e(sin(c3x)) × c3cos(c3x) = c3e(sin(c3x))cos(c3x)

Derivative of y = x²-4x

To know  more about power rule

https://brainly.com/question/29288036

#SPJ11

The radius of a circle is 19 m. Find its area to the nearest whole number.

Answers

Answer:

1,134 m²

Step-by-step explanation:

area of a circle = πr²

value of π = 3.14

= 3.14 * (19)²

= 3.14 * 361

= 1,133.54

by rounding off to the nearest whole number,

area of a circle = 1,134 m²

Answer:

1134

Step-by-step explanation:

area of a circle is πrsquare

and π=3.14 so 3.14 multiplied by 19 square=1133.54 approximated to the nearest whole number is 1134

help will mark brainliest

Answers

Answer:

Median = 70

Lower Quartile = 52

Upper Quartile = 76

Interquartile range = 24

Step-by-step explanation:

Since you've already correctly identified the minimum and maxiumum, we simply need to find the lower and upper quartiles, and the interquartile range.

Step 1:  Find the median:

The median lies in the middle of the data. Because there are 11 values in the data set, we know that there will be 5 values to the left and right of the median.  Also, the values are already in numerical order so we can find the median directly without having to rearrange the numbers.  

Thus, the median is 70.

Step 2:  Find the Lower Quartile (Q1):

To find the lower quartile, we find the middle number of the 5 values to the left of the median.  Out of 46, 48, 52, 62, and 70, 52 lies in the middle so its the lower quartile.

Step 3:  Find the Upper Quartile (Q3):

To find the upper quartile, we find the middle number of the 5 values to the right of the median.Out of 71, 74, 76, 76, and 78, 76 lies in the middle so its the upper quartile.

Step 4:  Find the interquartile range (IQR)

The interquartile range is the difference between the upper and lower quartile.76 - 52 = 24.  Thus, the interquartile range is 24.

$9500 is​ invested, part of it at ​12% and part of it at ​9%.
For a certain​ year, the total yield is ​$1032.00.
1a. How much was invested at 12%
1b. How much was invested at 9%
--------"

Answers

$5,900.00 was invested at 12% and the remaining amount ($9500 - $5,900.00 = $3,500.00) was invested at 9%.

Let's assume that the amount invested at 12% is x dollars. Since the total investment is $9500, the amount invested at 9% would be ($9500 - x) dollars. The total yield for the year is given as $1032.00.

To calculate the yield from the investment at 12%, we multiply the amount invested at 12% (x) by the interest rate of 12% (0.12): 0.12x. Similarly, the yield from the investment at 9% can be calculated by multiplying the amount invested at 9% ($9500 - x) by the interest rate of 9% (0.09): 0.09($9500 - x).

The total yield is the sum of the yields from the two investments, which is given as $1032.00. Therefore, we can write the equation: 0.12x + 0.09($9500 - x) = $1032.00.

Simplifying the equation, we have: 0.12x + 0.09($9500) - 0.09x = $1032.00.

0.03x + 0.09($9500) = $1032.00.

0.03x + $855.00 = $1032.00.

0.03x = $1032.00 - $855.00.

0.03x = $177.00.

x = $177.00 / 0.03.

x ≈ $5,900.00.

Therefore, approximately $5,900.00 was invested at 12% and the remaining amount ($9500 - $5,900.00 = $3,500.00) was invested at 9%.

Learn more about interest rate here:

https://brainly.com/question/28272078

#SPJ11

(1 point) Write each vector in terms of the standard basis vectors i, j, k. (2,3) = = (0, -9) = = (1, -5,3) = = 000 (2,0, -4) = =

Answers

To write each vector in terms of the standard basis vectors i, j, k, we express the vector as a linear combination of the standard basis vectors. The standard basis vectors are i the = (1, 0, 0), j = (0, 1, 0), and k = (0, 0, 1).

1) (2, 3) = 2i + 3j

2) (0, -9) = 0i - 9j = -9j

3) (1, -5, 3) = 1i - 5j + 3k

4) (2, 0, -4) = 2i + 0j - 4k = 2i - 4k

By expressing the given vectors in terms of the standard basis vectors, we represent them as the linear combinations of the i, j, and the k vectors.

To learn more about Vectors - brainly.com/question/31265178

#SPJ11

3. A sum of RM5,000 has been used to purchase an annuity that requires periodic payment at every quarter-end for 3 years. The rate of interest is 6% compounded quarterly. (a) How much is the payment to be made at the end of every quarter? (b) Calculate the interest charged on the annuity.

Answers

RM261.84 is the payment to be made at the end of every quarter. RM1,857.92 is the interest charged on the annuity.

To calculate the payment to be made at the end of every quarter, we can use the formula for the present value of an annuity:

PV = PMT * (1 - (1 + r)^(-n)) / r

Where:

PV = Present value of the annuity

PMT = Payment to be made at the end of every quarter

r = Interest rate per period

n = Number of periods

In this case, the present value (PV) is RM5,000, the interest rate (r) is 6% compounded quarterly, and the number of periods (n) is 3 years, which is equivalent to 12 quarters.

(a) Calculate the payment to be made at the end of every quarter:

PV = PMT * (1 - (1 + r)^(-n)) / r

5000 = PMT * (1 - (1 + 0.06/4)^(-12)) / (0.06/4)

Let's solve this equation for PMT:

5000 = PMT * (1 - (1.015)^(-12)) / (0.015)

5000 * (0.015) = PMT * (1 - (1.015)^(-12))

75 = PMT * (1 - 0.7136)

PMT * 0.2864 = 75

PMT = 75 / 0.2864

PMT ≈ RM261.84

So, the payment to be made at the end of every quarter is approximately RM261.84.

(b) Calculate the interest charged on the annuity:

To calculate the interest charged on the annuity, we can subtract the total amount of payments made from the initial investment:

Total Payments = PMT * n

Total Payments = RM261.84 * 12

Total Payments ≈ RM3,142.08

Interest Charged = PV - Total Payments

Interest Charged = RM5,000 - RM3,142.08

Interest Charged ≈ RM1,857.92

Therefore, the interest charged on the annuity is approximately RM1,857.92.

To know more about annuity refer to this link-

https://brainly.com/question/23554766#

#SPJ11

Let Ps be the regular (planar) triangle. We are going to colorize the three vertices of Ps by 4 different colors (Cyan, Magenta, Yellow, Black). We will identify two colorings of the triangle are the same if two colored triangles can be exactly agreed by a suitable rotation or a reflection. Using Burnside's
formula, determine how many different colored regular triangles are possible.

Answers

Given: We have the regular (planar) triangle named Ps with three vertices colored with 4 different colors (Cyan, Magenta, Yellow, Black).

We need to identify two colorings of the triangle are the same if two colored triangles can be exactly agreed by a suitable rotation or a reflection. Using Burnside's formula, we have to determine how many different colored regular triangles are possible.

Burnside's Lemma:Let X be a finite set and let G be a finite group of permutations of X. Let an element of G be denoted by g. For each g ∈ G let Xg be the set of points in X left fixed by g. Then the number of orbits of X under G is given by:Orbit of G under X= (1/|G|) ∑g∈G |Xg|The group G is the group of symmetries of a regular triangle or an equilateral triangle and it has the following six elements:R0: the identity permutationR120: a counter-clockwise rotation by 120 degreesR240: a counter-clockwise rotation by 240 degrees S1: a reflection through a line going from one vertex through the opposite midpointS2: a reflection through a line going from another vertex through the opposite midpointS3: a reflection through a line going from one side's midpoint through the opposite vertexThe permutation R0 has 4 fixed points since it does not move any vertex. (4 points)

Each of the permutations R120 and R240 has 0 fixed points because every vertex gets moved by these rotations. (0 points)The permutation S1 has 2 fixed points. The two fixed points are the vertices that are not on the line of reflection, and every other point is reflected to a different point. (2 points)The permutation S2 also has 2 fixed points, which are the same as the fixed points of S1. (2 points)The permutation S3 has 3 fixed points, which are the midpoints of each side. (3 points)Thus, by Burnside's formula, we have for the triangle:

[tex]Number of Orbits = (1/|G|) ∑g∈G |Xg|[/tex]

Where, |G|=6=1/6*(4+0+0+2+2+3)=11/3≈3.67

Thus, there are approximately 3.67 different colored regular triangles that are possible when three vertices of a regular triangle are colored with 4 different colors and two colorings of the triangle are the same if two colored triangles can be exactly agreed by a suitable rotation or a reflection.

Learn more about triangle here:

https://brainly.com/question/17121335

#SPJ11

A triangle is made of points A(1, 2, 1), B(2, 5, 3) and C(0, 1, 2). Use vectors to find the area of this triangle.

Answers

To find the area of a triangle using vectors, we can use the formula:

Area = 1/2 * |AB x AC|

where AB is the vector from point A to B, AC is the vector from point A to C, and x represents the cross product. Given the coordinates of points A, B, and C, we can calculate the vectors AB and AC:

AB = B - A = (2, 5, 3) - (1, 2, 1) = (1, 3, 2)

AC = C - A = (0, 1, 2) - (1, 2, 1) = (-1, -1, 1)

Now, we can calculate the cross product of AB and AC:

AB x AC = (1, 3, 2) x (-1, -1, 1)

To calculate the cross product, we can use the determinant:

|i   j   k|

|1   3   2|

|-1 -1   1|

Expanding the determinant, we have:

= i * (3 * 1 - 2 * -1) - j * (1 * 1 - 2 * -1) + k * (1 * -1 - (-1) * 3)

= i * (3 + 2) - j * (1 + 2) + k * (-1 + 3)

= i * 5 - j * 3 + k * 2

= (5, -3, 2)

Now, we can calculate the magnitude of the cross product:

|AB x AC| = √([tex]5^2 + (-3)^2 + 2^2[/tex]) = √38

Finally, we can calculate the area of the triangle:

Area = 1/2 * |AB x AC| = 1/2 * √38

Therefore, the area of the triangle formed by points A(1, 2, 1), B(2, 5, 3), and C(0, 1, 2) is 1/2 * √38.

learn more about vectors here:

https://brainly.com/question/24256726

#SPJ11

Find the derivative of the function by using the rules of differentiation. f(t) = 6+2 + VB + f'(t) Need Help? Read It 8. [-/2 Points] DETAILS TANAPCALC10 3.1.042. MY NC Find the slope and an equation

Answers

Answer:

The derivative of f(t) = 6t + 2 + VB is f'(t) = 6.

- The slope of the function is 6, indicating a constant rate of change.

- The equation of the function remains f(t) = 6t + 2 + VB.

Step-by-step explanation:

To find the derivative of the given function, we need to assume that "VB" represents a constant term, as it does not include any variable dependence. Thus, the function can be rewritten as:

f(t) = 6t + 2 + VB

To find the derivative, we apply the power rule of differentiation, which states that the derivative of a constant multiplied by a variable raised to the power of 1 is equal to the constant itself.

The derivative of the function f(t) = 6t + 2 + VB is:

f'(t) = 6

The derivative of a constant term is always zero since it does not involve any variable dependence. Therefore, the derivative of VB is zero.

Now, let's discuss the slope and equation. The derivative represents the slope of the function at any given point. In this case, the slope is a constant value of 6. This means that the function f(t) = 6t + 2 + VB has a constant slope of 6, indicating that it is a straight line with a constant rate of change.

The equation of the function f(t) = 6t + 2 + VB itself does not change after taking the derivative. It remains f(t) = 6t + 2 + VB.

Learn more about differentiation:https://brainly.com/question/954654

#SPJ11

= = = 7. (40 pts) Solve the following ODE Y" +4y' + 4y = e-4t[u(t) – uſt – 1)] y(0) = 0; y'(0) = -1" ignore u(t-1) t for the Fall 2021 final exam

Answers

Using the inverse Laplace Transform, we get y(t) = (1/2)[tex]e^{-2t}[/tex]  + (1/2)t [tex]e^{-2t}[/tex] + u(t-1)[(t-1)[tex]e^{2(t-1)}[/tex]- 1/2]. Finally, the solution of the ODE is y(t) = (1/2)[tex]e^{-2t}[/tex] + (1/2)t [tex]e^{-2t}[/tex]  + u(t-1)[(t-1)[tex]e^{2(t-1)}[/tex] - 1/2] for t in the interval [0, infinity).

Solve the ODE Y" + 4y' + 4y

= e-4t[u(t) – uſt – 1)] y(0)

= 0; y'(0) = -1 :

Given ODE is Y" + 4y' + 4y = e-4t[u(t) – u(t - 1)].

First, we need to solve the homogeneous equation Y" + 4y' + 4y = 0.

Let, Y = e^rt

We get r² [tex]e^rt[/tex] + 4r[tex]e^rt[/tex] + 4 [tex]e^rt[/tex] = 0

On dividing by e^rt, we get the quadratic equation r² + 4r + 4

= 0(r+2)^2 = 0r = -2 [Repeated root]

So, the solution of the homogeneous equation Y" + 4y' + 4y

= 0 is Yh

= c1 [tex]e^{-2t}[/tex]+ c2t [tex]e^{-2t}[/tex]

Now, we consider the non-homogeneous part of the given equation i.e., e^{-4t}[u(t) - u(t-1)]

Using Laplace Transform, we get

Y(s) = [LHS]Y"(s) + 4Y'(s) + 4Y(s)

= [RHS] [tex]e^{-4t}[/tex][u(t) - u(t-1)] ... (1)                                                               [tex]e^{-s}[/tex]

Applying Laplace Transform,

we get LY(s) = s²Y(s) - sy(0) - y'(0) + 4(sY(s) - y(0)) + 4Y(s)

= 1/(s+4) - 1/(s+4)  [tex]e^{-s}[/tex]LY(s) = (s²+4s+4)Y(s) + 1/(s+4) - 1/(s+4)  [tex]e^{-s}[/tex] + s ... (2)

Solving for Y(s), we get Y(s) = [1/(s+4) - 1/(s+4)[tex]e^{-s}[/tex]/(s²+4s+4)+ s/(s²+4s+4)Y(s)

= [[tex]e^{-s}[/tex]/(s+4)]/(s+2)² + [(s+2)/(s+2)²]Y(s) = [[tex]e^{-s}[/tex]/(s+4)]/(s+2)² + [s+2]/(s+2)²

Now, using the inverse Laplace Transform, we get y(t) = (1/2)[tex]e^{-2t}[/tex] + (1/2)t [tex]e^{-2t}[/tex]  + u(t-1)[(t-1) [tex]e^{2(t-1)}[/tex] - 1/2]

Finally, the solution of the ODE is y(t) = (1/2)[tex]e^{-2t}[/tex]  + (1/2)t [tex]e^{-2t}[/tex] + u(t-1)[(t-1)[tex]e^{2(t-1)}[/tex] - 1/2] for t in the interval [0, infinity).

The solution of the ODE is y(t) = (1/2)[tex]e^{-2t}[/tex] + (1/2)t [tex]e^{-2t}[/tex]  + u(t-1)[(t-1)[tex]e^{2(t-1)}[/tex]- 1/2]

To know more about inverse Laplace Transform

https://brainly.com/question/30358120

#SPJ11

The Mean Value Theorem: If f is continuous on a closed interval (a,b) and differentiable on (a,b), then there is at least one point c in (a,b) such that f'(a) f(b) – f(a) b-a (a) (3 points) The dist

Answers

The Mean Value Theorem states that If f is continuous on a closed interval (a,b) and differentiable on (a,b), then there is at least one point c in (a,b) such that f'(a) f(b) – f(a) b-a (a). The average velocity of the object over the time interval [a,b] is equal to the instantaneous velocity of the object at time c.

The average velocity of the object over the time interval [a,b] is given by:

(a) (3 points) (f(b) - f(a))/(b - a)

The instantaneous velocity of the object at time c is given by the derivative of the distance function f at time c, or f'(c). We want to show that there exists a time c in [a,b] such that these two velocities are equal, or:

f'(c) = (f(b) - f(a))/(b - a)

By the Mean Value Theorem, since f is continuous on [a,b] and differentiable on (a,b), there exists a time c in (a,b) such that:

f'(c) = (f(b) - f(a))/(b - a)

Therefore, there exists a time c in [a,b] such that the average velocity of the object over the time interval [a,b] is equal to the instantaneous velocity of the object at time c.

To know more about average Velocity refer here:

https://brainly.com/question/29125647#

#SPJ11

solve the following problems. Show your 1) Let u(x,y) = cos(2x) cosh(2y)
Show that the function u is harmonic,

Answers

The function u(x, y) = cos(2x) cosh(2y) needs to be shown as harmonic, which means it satisfies Laplace's equation.

To show that u(x, y) is harmonic, we need to confirm that it satisfies Laplace's equation, which states that the sum of the second partial derivatives with respect to x and y should equal zero.

Taking the partial derivatives of u(x, y) with respect to x and y:

∂u/∂x = -2sin(2x) cosh(2y)

∂u/∂y = 2cos(2x) sinh(2y)

Next, we compute the second partial derivatives:

∂²u/∂x² = -4cos(2x) cosh(2y)

∂²u/∂y² = 4cos(2x) cosh(2y)

Adding the second partial derivatives:

∂²u/∂x² + ∂²u/∂y² = -4cos(2x) cosh(2y) + 4cos(2x) cosh(2y) = 0

Since the sum of the second partial derivatives equals zero, we can conclude that u(x, y) = cos(2x) cosh(2y) is a harmonic function.

Learn more about derivatives here:

https://brainly.com/question/29144258

#SPJ11

15 POINTS
Simplify the expression

Answers

Answer:

[tex] \frac{ {d}^{4} }{ {c}^{3} } [/tex]

Step-by-step explanation:

[tex] {c}^{2} \div {c}^{5} = \frac{1}{ {c}^{3} } [/tex]

[tex] {d}^{5} \div {d}^{1} = {d}^{4} [/tex]

Therefore

[tex] = \frac{ {d}^{4} }{ {c}^{3} } [/tex]

Hope this helps

Consider the parametric curve given by =²+1 and y=1²-2t+1 At what point on the curve will the slope of the tangent line be 1? O (3, 1) O (1, 1) O There is no such a point. O (9,9)

Answers

Considering the parametric curve given by =²+1 and y=1²-2t+1, the point on the curve where the slope of the tangent line is 1 is (3, 1).

To find the point on the curve where the slope of the tangent line is 1, we need to determine the values of t that satisfy this condition. We can start by finding the derivatives of x and y with respect to t.

Taking the derivative of x = t^2 + 1, we get dx/dt = 2t.

Taking the derivative of y = 1^2 - 2t + 1, we get dy/dt = -2.

The slope of the tangent line at a point on the curve is given by dy/dx, which is equal to dy/dt divided by dx/dt.

Therefore, we have dy/dx = dy/dt / dx/dt = -2 / 2t = -1/t.

To find the point where the slope of the tangent line is 1, we need to solve the equation -1/t = 1. Solving for t gives us t = -1.

However, this value of t is not valid because the parameter t cannot be negative for the given curve.

Therefore, there is no point on the curve where the slope of the tangent line is 1. The correct answer is "There is no such point."

Learn more about parametric curve :

https://brainly.com/question/15585522

#SPJ11







18. Evaluate the integral (show clear work!): fxsin x dx

Answers

The integral of f(x) * sin(x) dx is -f(x) * cos(x) + integral of f'(x) * cos(x) dx + C, where C is the constant of integration.

To evaluate the integral of f(x) * sin(x) dx, we use integration by parts. The formula for integration by parts states that ∫ u dv = u v - ∫ v du, where u and v are functions of x.

Let's choose u = f(x) and dv = sin(x) dx. Taking the derivatives and antiderivatives, we have du = f'(x) dx and v = -cos(x).

∫ f(x) * sin(x) dx

Using integration by parts, let's choose u = f(x) and dv = sin(x) dx.

Differentiating u, we have du = f'(x) dx.

Integrating dv, we have v = -cos(x).

Applying the integration by parts formula:

∫ f(x) * sin(x) dx = -f(x) * cos(x) - ∫ (-cos(x)) * f'(x) dx

learn more about Integral here:

https://brainly.com/question/18125359

#SPJ4

Which of the following statement is true for the alternating series below? 2 Ž(-1)" 3" +3 n=1 Select one: Alternating Series test cannot be used, because bn = 3.73 2 is not decreasing. " Alternating Series test cannot be used, 2 because lim +0. 1- 3" + 3 The series converges by Alternating Series test. none of the others. O The series diverges by Alternating Series test

Answers

For the alternating series ((2 sum_n=1infty (-1)n (3n + 3)), the following statement is true: "The series converges by the Alternating Series test."

According to the Alternating Series test, if a series satisfies both of the following requirements: (1) the absolute value of the terms is dropping, and (2) the limit of the series as it approaches infinity is zero.

We have the sequence "a_n = 3n + 3" in the provided series. Even though the statement does not specify directly that the value of (|a_n|) is decreasing, we can see that as n increases, the terms (3n) grow larger and the value of (a_n) alternates in sign. This shows that the value of (|a_n|) is probably declining.

learn more about alternating here :

https://brainly.com/question/2420911

#SPJ11

Consider the following equation: In(4x + 5) + 4x = 25. Find an integer n so that the interval (n, n+1) contains a solution to this equation. n

Answers

Given equation is ln(4x + 5) + 4x = 25. We are required to find an integer n so that the interval (n, n+1) contains a solution to this equation.

To solve this equation, we have to use numerical methods. We can use the trial and error method or use graphical methods to find the solution.Let's consider the graphical method:First, let's plot the graphs of y = ln(4x + 5) + 4x and y = 25 and see where they intersect. We can use the Desmos graphing calculator for this.Step 1: Visit the Desmos Graphing Calculator website.Step 2: Enter the equations y = ln(4x + 5) + 4x and y = 25 in the given field.Step 3: Adjust the window of the graph to see the intersection points, which are shown in the image below.Image of the graph shown on Desmos calculator.The graph of y = ln(4x + 5) + 4x intersects the graph of y = 25 in the interval (4, 5).Thus, n = 4.Therefore, the solution is as follows:n = 4.

Learn more about equation here:

https://brainly.com/question/29657983

#SPJ11

Other Questions
A firm has two divisions: one is very risky and the other is much less risky. The company uses its investors' overall required rate of return to evaluate its investment projects. It is most likely that the firm will become:_(more/less risky) and (more or less valuable). Question 14: Given x = 8t18t and y = 2t - 6, find the following. (10 points) A) Determine the first derivative in terms of t. Show each step and simplify completely for full credit. B) Determine t (S)-2-butanol reacts with potassium dichromate (K2CrO4) in aqueous sulfuric acid to give A(C4H8O). Treatment of A with ethylmagnesium bromide in anhydrous ether gives B(C6H14O).Draw the structure of B.Include stereochemistry using the single up & single down drawing tools, and draw only the hydrogens at chiral centers and at aldehyde carbons. Orange Co. is a manufacturer and Pineapple Company the difference in the budgets the two entities will prep is a merchandiser. What is the difference in the budgets the two entitites will prepare?a. Orange Co. will prepare a production budget, and Pineapple Company will prepare a merchandise purchases budgetb. Orange Co. will prepare a sales forecast, and Pineapple Company will prepare a sales budget c. Pineapple Company will prepare a production budget, and Orange Co. will prepare a merchandise purchases budget d. Both compani es will prepare the same types of budgets The main advantage of using both the written text and the video clip is to make sure that the readerAnswer choices for the above questionA. knows where the region is located and what the land looks like.B. is provided with background knowledge about Kenyan culture.C. understands the key ideas of the lion problem and its solution.D. grasps how Richard Tureres invention works. echam wanks to errs Rids no0 is in ish the course. How much shall he save in a bank every month for the next 6 years at an interest rate of 8% compounded everytwo months to accumulate the stated amount? How does lactose (allolactose) act as an INDUCER in this system? Select one: a. Allolactose binds to the lacl protein (repressor), this induces a conformation change in lacl, it dissociates from the lac operator, so that RNA polymerase can transcribe the lacz gene, and the cell can use lactose as an energy source. b. Allolactose is broken down by the lacZ protein, and the cell can use lactose as an energy source O c. Allolactose binds to the lacl protein (repressor), this induces a conformation change in lacl, it binds more tightly to the lac operator RNA polymerase can't transcribe the lacZ gene, and the cell can't use lactose as an energy source. d. Allolactose binds to the lac promoter and recruits RNA polymerase to the lacZ gene, RNA polymerase transcribes the lacZ gene, and the cell can use lactose as an energy source. A dietician asks a patient about the food that the patient eats and makes the table below to summarize the results.MacromoleculeSuggested percentage of dietActual percentage of dietCarbohydrates 4565% 70%Lipids 2035% 5%Proteins 1035% 25%Based on the table, what advice do you think that the dietician will give the patient?The patient should increase the amount of lean meats (proteins) and decrease the amount of oils in his or her diet.The patient should decrease the amount of lean meats (proteins) and increase the amount of oils in his or her diet.The patient should decrease the amount of rice and pasta and increase the amount of oils in his or her diet.The patient should decrease the amount of rice and pasta and increase the amount of lean meats (proteins) in his or her diet. A mothball, composed of naphthalene (C10H8) has a mass of 1.86 g. How many naphthalene molecules does it contain? Express your answer in molecules to three significant figures. please answer quicklyFind the equation for the plane through the points Po(-5-2-2). Qo(3.2.4), and R(4,-1,-2) Using a coefficient of -3 for x, the equation of the plane is (Type an equation.) Suppose you deposit $2,050 at the end of each quarter in an account that will earn interest at an annual rate of 10 percent compounded quarterly. Required: eBook How much will you have at the end of four years? Move the points B and C below and then answer the question posed. a = AB is changing at a rate of 5 m/s. b = AC is changing at a rate of 1v m/s. How fast is c = BCV changing? Change rate of BC (in m/s step by step help please.1) Roberts Hair Salon offers a basic haircut and a deluxe haircut. Let p represent the demand for x basic haircuts. The price-demand equations are given by: p = 12 -0.3x a) Determine the Revenue funct T/F viruses and self-proteins are both examples of proteins produced inside the cell that may be recognized as antigens. Common duties and responsibilities of EMS personnel at the scene of a motor vehicle crash include all of the following, EXCEPT: An object is placed at several different distances to the left of the lenses and mirrors (focal length = f). For each case, draw the 3 principal rays to locate the image and then (S.A.L.T.) [Size, Attitude, Location, Type] the image. If the effects of contractionary fiscal policy hit when the economy is already contracting: Johnny adds two vectors shown below. Assuming he adds the two vectors correctly, which of the following will be the magnitude of the resultant vector? (5 points) A V58 K(-3.4) B V50 C V20 J(-21) Which of the following are true when solving a decision tree? O The value of a decision node is computed by taking the weighted average of the successor nodes' values. The decision tree represents a time ordered sequence of decisions and events from left to right. The values of the terminal nodes are weighted averages. O Exactly two of the answers are correct. O The EMV of an event node is computed by taking the weighted average of the predecessor nodes' values. Which of the following are made AFTER the financial statements are prepared?A)Transaction Entries B) Adjusting Entries C) Closing Entries