complete combustion of 5.60 g of a hydrocarbon produced 17.3 g of co2 and 7.95 g of h2o. what is the empirical formula for the hydrocarbon? insert subscripts as necessary.

Answers

Answer 1

The empirical formula of the hydrocarbon is [tex]CH_2.[/tex]

What is  the empirical formula?

The empirical formula of a compound represents the simplest, most reduced ratio of elements present in the compound. It shows the relative number of atoms of each element in the compound, without indicating the actual molecular structure.

To determine the empirical formula of the hydrocarbon, we need to find the ratios of C and H atoms in the compound.

Calculate the moles of [tex]CO_2[/tex] produced:

Molar mass of [tex]CO_2[/tex] = 12.01 g/mol + 2(16.00 g/mol)

= 44.01 g/mol

Moles of [tex]CO_2[/tex]=

[tex]\frac{mass &of &CO_2}{molar &mass& of& CO_2} \\= \frac{17.3 g}{44.01 g/mol}\\ = 0.393 mol CO_2[/tex]

Calculate the moles of [tex]H_2O[/tex] produced:

Molar mass of [tex]H_2O[/tex] = 2(1.01 g/mol) + 16.00 g/mol

= 18.02 g/mol

Moles of [tex]H_2O[/tex] =

[tex]\frac{mass& of &H_2O}{ molar &mass& of &H_2O}\\= \frac{7.95 g}{18.02 g/mol }\\= 0.441 mol H_2O[/tex]

Determine the moles of carbon and hydrogen:

Moles of C =[tex]0.393 mol &CO_2 *\frac{1 mol C }{1 &mol &CO_2}[/tex]

= 0.393 mol C

Moles of H = [tex]0.441 mol &H_2O *\frac{2 mol &H }{1 mol &H_2O}[/tex]

= 0.882 mol H

Find the simplest whole number ratio of C to H:

Divide both moles of carbon and hydrogen by the smaller value (0.393 mol):

Moles of C = [tex]\frac{0.393 mol C}{0.393 mol}[/tex] = 1 mol C

Moles of H = [tex]\frac{0.882 mol& H}{0.393 mol}[/tex] = 2.24 mol H

Therefore,the empirical formula of the hydrocarbon is[tex]CH_2.[/tex]

To learn more about the empirical formula   from the given link

brainly.com/question/1603500

#SPJ4


Related Questions

a 3.50 gram sample of zinc metal reacts with hydrochloric acid to produce zinc chloride and hydrogen gas. how many moles of zinc chloride and how many moles of hydrogen gas are produced

Answers

To solve this problem, we need to use the balanced chemical equation for the reaction. The equation is:
Zn + 2HCl → ZnCl2 + H2

From the equation, we can see that 1 mole of zinc produces 1 mole of zinc chloride and 1 mole of hydrogen gas. So, to find the number of moles of zinc chloride and hydrogen gas produced, we need to first calculate the number of moles of zinc in the sample.
The molar mass of zinc is 65.38 g/mol. So, the number of moles of zinc in the sample is:
3.50 g ÷ 65.38 g/mol = 0.0535 mol
Therefore, the number of moles of zinc chloride and hydrogen gas produced is also 0.0535 mol each.
To answer your question, we'll first find the moles of zinc (Zn) using its molar mass, which is 65.38 g/mol:
Moles of Zn = (3.50 g) / (65.38 g/mol) = 0.0535 mol
The balanced equation for the reaction is:

Zn + 2HCl → ZnCl₂ + H₂
From the equation, we can see that 1 mole of Zn reacts with 1 mole of ZnCl₂ and 1 mole of H₂. Since we have 0.0535 mol of Zn:
Moles of ZnCl₂ produced = 0.0535 mol
Moles of H₂ produced = 0.0535 mol
So, 0.0535 moles of zinc chloride and 0.0535 moles of hydrogen gas are produced in the reaction.

To know more about balanced visit:

https://brainly.com/question/28699225

#SPJ11

write a balanced chemical equation based on the following description: aqueous barium hydroxide reacts with aqueous ammonium sulfate to produce solid barium sulfate, liquid water and ammonia gas.

Answers

The balanced chemical equation for this reaction is:
Ba(OH)2(aq) + (NH4)2SO4(aq) → BaSO4(s) + 2H2O(l) + 2NH3(g)

Based on the provided description, the balanced chemical equation for the reaction between aqueous barium hydroxide and aqueous ammonium sulfate is:
Ba(OH)2 (aq) + (NH4)2SO4 (aq) → BaSO4 (s) + 2H2O (l) + 2NH3 (g)
In this reaction, aqueous barium hydroxide (Ba(OH)2) and aqueous ammonium sulfate ((NH4)2SO4) react to produce solid barium sulfate (BaSO4), liquid water (H2O), and ammonia gas (NH3). The balanced chemical equation for this reaction is:
Ba(OH)2(aq) + (NH4)2SO4(aq) → BaSO4(s) + 2H2O(l) + 2NH3(g)

Ba(OH)2 (aq) + (NH4)2SO4 (aq) → BaSO4 (s) + 2H2O (l) + 2NH3 (g)
In this reaction, aqueous barium hydroxide (Ba(OH)2) and aqueous ammonium sulfate ((NH4)2SO4) react to produce solid barium sulfate (BaSO4), liquid water (H2O), and ammonia gas (NH3).

To know more about reaction visit:

https://brainly.com/question/30464598

#SPJ11

The following reaction
2H2S(g)⇌2H2(g)+S2(g),Kc=1.67×10−7 at 800∘C
is carried out at the same temperature with the following initial concentrations: [H2S]=0.100M, [H2]=0.100M, and [S2]=0.00 M. Find the equilibrium concentration of S2.

Answers

The equilibrium concentration of S2 is approximately [tex]1.67 * 10^{(-7)} M[/tex] when a reaction is carried out at the same temperature.

To find the equilibrium concentration of [tex]S_2[/tex] in the reaction [tex]2H_2S(g) < -- > 2H_2(g) + S_2(g)[/tex], we can use the given equilibrium constant (Kc) and the initial concentrations of [tex]H_2S[/tex], [tex]H_2[/tex], and [tex]S_2[/tex].

The equilibrium constant expression for this reaction is:

Kc = [tex][H_2]^2 * [S_2] / [H_2S]^2[/tex]

We are given that Kc = [tex]1.67 * 10^{(-7)}[/tex] and the initial concentrations are [[tex]H_2S[/tex]] = 0.100 M, [[tex]H_2[/tex]] = 0.100 M, and [[tex]S_2[/tex]] = 0.00 M.

Let's assume the change in the concentration of [tex]S_2[/tex] at equilibrium is "x" M. This means that the equilibrium concentration of [tex]S_2[/tex] will be x M.

Using the given initial concentrations and the expression for Kc, we can set up the equation:

[tex]1.67 * 10^{(-7)} = (0.100 M)^2 * x / (0.100 M)^2[/tex]

Simplifying the equation:

[tex]1.67 * 10^{(-7)} = x[/tex]

To learn more about temperature click here https://brainly.com/question/32257956

#SPJ11

which of the following characteristics identifies a ph-balanced shampoo

Answers

The pH scale ranges from 0 to 14, with values below 7 considered acidic, 7 being neutral, and values above 7 being alkaline. Hair and scalp have a slightly acidic pH, and using a pH-balanced shampoo helps maintain the natural balance.

The characteristic that identifies a pH-balanced shampoo is having a pH level close to the natural pH level of the hair and scalp, which is around 4.5 to 5.5. Therefore, a pH-balanced shampoo will have a pH level in the acidic to neutral range, typically between 4.5 and 5.5, to avoid causing damage or disrupting the natural pH balance of the hair and scalp.

Learn more about natural pH here ;

https://brainly.com/question/5171852

#SPJ11

Final answer:

A pH-balanced shampoo should have a pH between 4.5 and 5.5, contain mild acids or bases, and help to keep the hair and scalp's natural pH level balanced.

Explanation:Characteristics of a pH-balanced shampoo:pH is between 4.5 and 5.5Contains mild acids or bases to maintain the desired pH level Helps to keep the hair and scalp's natural pH level balanced

A pH-balanced shampoo is important because it prevents the scalp from becoming too dry or too oily. It ensures that the hair cuticle is closed, reducing frizz and improving shine. Using a pH-balanced shampoo can also help maintain the effectiveness of other hair products.

Learn more about pH-balanced shampoo here:

https://brainly.com/question/32512053

#SPJ6

a sample of c3h8 has 5.44×1024 h atoms. how many carbon atoms does the sample contain?

Answers

In the molecule C3H8 (propane), there are three carbon atoms (C) and eight hydrogen atoms (H). Given that the sample of C3H8 has 5.44×10^24 H atoms, we can use the ratio of the number of H atoms to the number of C atoms to determine the number of C atoms in the sample.

The ratio of H atoms to C atoms in C3H8 is 8:3. Therefore, we can set up the following proportion:

(8 H atoms) / (3 C atoms) = (5.44×10^24 H atoms) / (x C atoms)

Cross-multiplying and solving for x (the number of C atoms), we get:

8 * x = 3 * (5.44×10^24)

x = (3 * 5.44×10^24) / 8

x ≈ 2.04×10^24

Therefore, the sample of C3H8 contains approximately 2.04×10^24 carbon (C) atoms.

Learn more about propane here ;

https://brainly.com/question/14519324

#SPJ11

a chemist trying to synthesize a particular compound attempts two different synthesis reactions. the equilibrium constants for the two reactions are 23.3 and 2.2 * 10^4 at room temperature. however, upon carrying out both reactions for 15 minutes, the chemist finds that the reaction with the smaller equilibrium constant produces more of the desired product. explain how this might be possible.

Answers

The equilibrium constant indicates the relative concentrations of reactants and products at equilibrium.

However, the rate of reaction is also influenced by factors such as reaction mechanism, temperature, and reactant concentrations. It's possible that the reaction with the smaller equilibrium constant has a faster rate, allowing it to produce more product in the same amount of time. Additionally, the reaction with the larger equilibrium constant may have a higher activation energy, making it more difficult to proceed to completion in the short amount of time given. Ultimately, the rate of reaction may outweigh the thermodynamic driving force in determining which reaction produces more product in a given time frame. Although a higher equilibrium constant (2.2 * 10^4) indicates a greater extent of reaction favoring products, it doesn't necessarily mean a faster reaction rate. The reaction with a smaller constant may have a faster rate, allowing it to reach equilibrium and produce more desired product within the 15-minute timeframe. This can occur due to differences in activation energy or presence of a catalyst that promotes the reaction with a smaller equilibrium constant.

To know more about equilibrium visit:

https://brainly.com/question/30694482

#SPJ11

What volume of the oxygen gas, measured at 27 degree C and 0. 987 atm, is produced from the decomposition of 67. 5 g of HgO(s)? 2HgO(s) rightarrow 2 Hg(1) + O_2(g). 7. 77 L. 6. 98 L. 3. 89 L. 3. 49 L

Answers

The volume of the oxygen gas that measured at 27° C and 0.987 atm is produced from the decomposition of 67.5 g of HgO(s) from the equation 2HgO(s) → 2 Hg(l) + O₂(g) is 3.89 L (Option C).

According to the given reaction, 2 moles of HgO(s) produce 1 mole of O₂(g). The molar mass of HgO is 216.59 g/mol.

To calculate the number of moles of HgO, we can use the given mass:

67.5 g HgO x (1 mol HgO/216.59 g HgO)

= 0.3111 mol HgO

Therefore, the number of moles of O₂ produced will be half of the number of moles of HgO:

0.3111 mol HgO x (1 mol O₂/2 mol HgO)

= 0.15555 mol O₂

Using the ideal gas law, we can calculate the volume of the O₂ produced:

V = nRT/P

V = (0.15555 mol)(0.08206 L·atm/mol·K)(300 K)/(0.987 atm)

V = 4.044 L, or 4.04 L (rounded to two decimal places)

However, we need to correct for the volume of O₂ at 27°C (300 K) and 0.987 atm:

V₂ = V₁(P₂/P₁)(T₁/T₂)

V₂ = 4.044 L(0.987 atm)/(1 atm)(273 K)/(300 K)

V₂ = 3.89 L

Therefore, the volume of O₂ gas produced is 3.89 L (rounded to two decimal places).

Learn more about volume of O₂: https://brainly.com/question/29791241

#SPJ11

is it possible for methanol to react with phenylalanineto form the methyl ester in the absence of acid

Answers

The reaction of methanol with phenylalanine to form the methyl ester is typically carried out in the presence of an acid catalyst, such as hydrochloric acid. The acid serves to protonate the carboxylic acid group of phenylalanine, making it more reactive towards nucleophilic attack by methanol.

However, in the absence of an acid catalyst, the reaction can still occur, albeit at a much slower rate. This is because the carboxylic acid group of phenylalanine is still slightly acidic, and can act as a weak acid catalyst for the reaction with methanol. Additionally, the amino group of phenylalanine can act as a nucleophile, attacking the carbonyl carbon of the carboxylic acid group and forming an intermediate before being displaced by methanol.
Overall, while it is possible for methanol to react with phenylalanine to form the methyl ester in the absence of an acid catalyst, the reaction will be much slower and less efficient.

To know more about Methyl visit:

https://brainly.com/question/31490464

#SPJ11

which type of formula provides the most information about a compound? group of answer choices structural simplest molecular empirical chemical

Answers

The type of formula that provides the most information about a compound is the structural formula. It shows the arrangement of atoms and bonds in a molecule, providing a detailed representation of its chemical structure.


The type of formula that provides the most information about a compound is the structural formula. It shows the arrangement of atoms in a molecule and indicates how they are bonded to one another. In contrast, the simplest, molecular, empirical, and chemical formulas only provide basic information about the compound's composition but do not depict its structure or bonding patterns. The structural formula is valuable for understanding the compound's properties and reactivity, making it the most informative among the given options.The type of formula that provides the most information about a compound is the structural formula. It shows the arrangement of atoms and bonds in a molecule, providing a detailed representation of its chemical structure.

To know more about atoms visit:

https://brainly.com/question/1566330

#SPJ11

What type of interaction would you expect between the following side chains in the tertiary (39) or quaternary (49) structure of a protein? CH2CO ~and CH2CH2CH2CH2NH: Select one:
a. interactions do not exist between side chains b. hydrogen bonds
c. ionic bonds d: dispersion forces

Answers

I would expect an ionic bond between the CH2CO and CH2CH2CH2CH2NH side chains in the tertiary or quaternary structure of a protein. Ionic bonds occur when there is a complete transfer of electrons from one atom to another, resulting in positively and negatively charged ions that attract each other.

In this case, the CH2CO side chain contains a carbonyl group with a partial negative charge, while the CH2CH2CH2CH2NH side chain contains an amino group with a partial positive charge. These opposite charges would attract each other and form an ionic bond. Hydrogen bonds, on the other hand, occur when a hydrogen atom is attracted to an electronegative atom, such as oxygen or nitrogen. Dispersion forces are weak attractive forces that occur between all molecules. In summary, the correct answer would be c. ionic bonds.

To know more about Ionic bonds visit:

https://brainly.com/question/30373783

#SPJ11

how to rank ionic compounds in order of increasing attraction between ions

Answers

To rank ionic compounds in order of increasing attraction between ions, we need to consider the factors that influence the strength of the ionic bond.

Charge: The magnitude of the charges on the ions affects the strength of attraction. Higher charge on ions leads to stronger attractions. Thus, compounds with higher charged ions have stronger attractions. Size: The size of the ions plays a role in determining the strength of the attraction. Smaller ions can come closer together, resulting in stronger attractions. Thus, compounds with smaller ions have stronger attractions. Lattice energy: Lattice energy is the energy released when ions come together to form a solid lattice. Higher lattice energy corresponds to stronger attractions between ions. Compounds with higher lattice energy have stronger attractions. Based on these factors, we can rank the ionic compounds. Generally, compounds with higher charges, smaller ions, and higher lattice energy will have stronger attractions between ions. Therefore, compounds with higher charges, smaller ions, and higher lattice energy should be ranked higher in terms of increasing attraction between ions. In summary, when ranking ionic compounds in order of increasing attraction between ions, we consider the factors of charge, size, and lattice energy. Compounds with higher charges, smaller ions, and higher lattice energy will have stronger attractions and should be ranked higher in terms of increasing attraction between ions.

Learn more about Lattice energy here:

https://brainly.com/question/29735933

#SPJ11

Calculate how much energy will be released if 0.50 moles of oxygen (O2) are consumed in the reaction:
2Mg + O2 → 2MgO
a) 946 kJ
b) 2838 kJ
c) 1892 kJ
d) 5676 kJ

Answers

To calculate the energy released in this reaction, we need to use the balanced equation and the enthalpy change of formation for magnesium oxide (MgO). The correct answer is not one of the options given. The energy released when 0.50 moles of oxygen are consumed in the reaction is -150.45 kJ.

First, we need to calculate the number of moles of magnesium (Mg) that react with 0.50 moles of oxygen (O2). From the balanced equation, we see that 2 moles of Mg react with 1 mole of O2, so we need 1 mole of Mg for every 0.50 moles of O2. Therefore, we have 0.25 moles of Mg.
Next, we need to find the enthalpy change of formation for MgO. This value is -601.8 kJ/mol (negative because the reaction releases energy).
Finally, we can use the following formula to calculate the energy released:
Energy released = moles of MgO formed x enthalpy change of formation for MgO
Since 2 moles of MgO are formed for every 2 moles of Mg, and we have 0.25 moles of Mg, we know that 0.25 moles of MgO are formed.
Therefore:
Energy released = 0.25 moles x (-601.8 kJ/mol)
Energy released = -150.45 kJ
The correct answer is not one of the options given. The energy released when 0.50 moles of oxygen are consumed in the reaction is -150.45 kJ.
Note: The negative sign indicates that the reaction is exothermic, meaning it releases energy.

To know more about Moles visit:

https://brainly.com/question/31906285

#SPJ11

Both H2O and H2PO4? are amphoteric.
Part A
Write an equation to show how H2PO4? can act as an acid with H2O acting as a base.
Part B
Write an equation to show how H2PO4? can act as a base with H2O acting as an acid.

Answers

Both equations demonstrate the amphoteric nature of [tex]H_2PO_4^-[/tex], as it can act as both an acid and a base depending on the nature of the other species involved in the reaction.

Part A:

[tex]H_2PO_4^- (aq) + H_2O (l) -- > H_3O^+ (aq) + HPO_4^{2-} (aq)[/tex]

In this equation, [tex]H_2PO_4^-[/tex] acts as an acid by donating a proton (H⁺) to water ([tex]H_2O[/tex]), which acts as a base. The result is the formation of hydronium ion ([tex]H_3O^+[/tex]) and the conjugate base, [tex]H_2PO_4^-[/tex].

Part B:

[tex]H_2PO_4^- (aq) + H_2O (l) < -- > OH^- (aq) + H_3PO_4 (aq)[/tex]

In this equation, [tex]H_2PO_4^-[/tex]⁻ acts as a base by accepting a proton (H⁺) from water ([tex]H_2O[/tex]), which acts as an acid. The result is the formation of hydroxide ion (OH⁻) and the conjugate acid, [tex]H_3PO_4[/tex].

Water, being a neutral molecule, can act as both an acid and a base, depending on the reaction conditions.

To learn more about amphoteric click here https://brainly.com/question/31839457

#SPJ11

a certain reaction has an activation energy of 49.06 kj/mol. at what kelvin temperature will the reaction proceed 7.50 times faster than it did at 323 k?

Answers

Answer: The relationship between the rate constant k and temperature T is given by the Arrhenius equation:

k = A * exp(-Ea/RT)

where A is the pre-exponential factor, Ea is the activation energy, R is the gas constant, and T is the absolute temperature.

If we assume that the pre-exponential factor is constant, we can write:

k1 / k2 = exp[(Ea/R) * (1/T2 - 1/T1)]

where k1 and T1 are the initial rate constant and temperature, and k2 is the rate constant when the reaction proceeds 7.50 times faster, and T2 is the temperature at which this occurs.

We can rearrange this equation to solve for T2:

T2 = Ea / [R * ln(k1 / k2) + (1/T1)]

Substituting the given values, we get:

T2 = (49.06 kJ/mol) / [8.314 J/(mol*K) * ln(1/7.50) + (1/323 K)]

T2 = 440.3 K

Therefore, the temperature at which the reaction will proceed 7.50 times faster than it did at 323 K is 440.3 K. Answer: 440.3.

At apprοximately 388.8 K, the reactiοn will prοceed 7.50 times faster than it did at 323 K.

What is Arrhenius equatiοn?

Tο sοlve this prοblem, we can use the Arrhenius equatiοn, which relates the rate cοnstant (k) οf a reactiοn tο the activatiοn energy (Eₐ) and temperature (T):

k = A * exp(-Eₐ / (R * T))

where:

k = rate cοnstant

A = pre-expοnential factοr οr frequency factοr

Eₐ = activatiοn energy

R = gas cοnstant (8.314 J/(mοl*K))

T = temperature in Kelvin

We are given that the reactiοn prοceeds 7.50 times faster at a certain temperature (T₂) cοmpared tο a reference temperature οf 323 K (T₁). Let's denοte the rate cοnstants as k₁ and k₂ fοr the reference temperature and the certain temperature, respectively. Therefοre, we have:

k₂ = 7.50 * k₁

Nοw we can set up the ratiο between the rate cοnstants:

k₂ / k₁ = A * exp(-Eₐ / (R * T₂)) / (A * exp(-Eₐ / (R * T₁)))

Simplifying and rearranging the equatiοn:

7.50 = exp(-Eₐ / (R * T₂)) / exp(-Eₐ / (R * T₁))

Taking the natural lοgarithm (ln) οf bοth sides:

ln(7.50) = -Eₐ / (R * T₂) + Eₐ / (R * T₁)

Simplifying further:

ln(7.50) = (Eₐ / (R * T₁)) - (Eₐ / (R * T₂))

Nοw we can sοlve fοr T₂. Rearranging the equatiοn:

(Eₐ / (R * T₂)) = (Eₐ / (R * T₁)) - ln(7.50)

T₂ = Eₐ / (R * ((Eₐ / (R * T₁)) - ln(7.50)))

Substituting the given values:

Eₐ = 49.06 kJ/mοl = 49.06 * 10³ J/mοl

T₁ = 323 K

R = 8.314 J/(mοl*K)

T₂ = (49.06 * 10³ J/mοl) / (8.314 J/(mοlK) * ((49.06 * 10³ J/mοl) / (8.314 J/(mοlK) * 323 K) - ln(7.50)))

Calculating T₂:

T₂ ≈ 388.8 K

Therefοre, at apprοximately 388.8 K, the reactiοn will prοceed 7.50 times faster than it did at 323 K.

Learn more about activation energy

https://brainly.com/question/28384644

#SPJ4

a 50.0 ml sample of 0.155 m hno2(aq) is titrated with 0.100 m naoh(aq). what is the ph of a solution after the addition of 25.0 ml of naoh? [ ka of hno2 = 4.5 × 10–4 ]

Answers

After the addition of 25.0 ml of 0.100 M NaOH to a 50.0 ml sample of 0.155 M [tex]HNO_{2}[/tex], the resulting solution's pH can be calculated by considering the neutralization reaction between HNO_{2} and NaOH. Using the given Ka value of HNO_{2} (4.5 × [tex]10^{-4}[/tex]), the concentration of the resulting [tex]H_{3}O^{+}[/tex] ions can be determined, and the pH can be calculated.

To calculate the pH of the solution after the addition of NaOH, we need to determine the number of moles of  HNO_{2}  and NaOH reacted in the titration. The initial moles of  HNO_{2}  can be calculated by multiplying the initial concentration (0.155 M) by the initial volume (50.0 ml). Similarly, the moles of NaOH added can be obtained by multiplying the concentration (0.100 M) by the volume added (25.0 ml). Since HNO_{2} and NaOH react in a 1:1 ratio, the moles of  HNO_{2} remaining after the reaction will be the difference between the initial moles and the moles of NaOH added.

Next, we can calculate the concentration of  HNO_{2}  after the reaction by dividing the moles of  HNO_{2}  remaining by the final volume (75.0 ml). Using the given Ka value of  HNO_{2}  (4.5 × [tex]10^{-4}[/tex]), we can set up an expression for the equilibrium constant and solve for the concentration of H_{3}O^{+} ions, which is equal to the concentration of  HNO_{2}  after the reaction. Finally, the pH can be calculated by taking the negative logarithm (base 10) of the  concentration. By following these steps, the pH of the solution after the addition of NaOH can be determined based on the given information.

Learn more about logarithm here: https://brainly.com/question/30226560

#SPJ11

1.1 The rate of a chemical reaction can be defined as ... A. The rate of change in concentration of reactants or products per unit time. B The change in concentration of reactants or products per unit time. C. The change in amount of reactants or products per unit time. D. The rate of change in amount of reactants or products per unit time. (2)​

Answers

1. The rate of a chemical reaction can be defined as:
A. The rate of change in concentration of reactants or products per unit time.

2. The correct answer is A. The change in concentration of reactants or products per unit time.

ethyl chloride (c2h5cl) can be used as a topical anesthetic, for example prior to giving a painful injection. when liquid ethyl chloride is sprayed on the skin, energy absorbed from the skin causes the liquid to evaporate. this numbs the injection site by quickly decreasing the skin temperature to near 0oc. how much heat (in kj) is required to evaporate 3.06 ml of ethyl chloride at 25oc?

Answers

the amount of heat required to evaporate 3.06 ml of ethyl chloride at 25°C is 1.30 kJ.

The first step in solving this problem is to calculate the amount of energy required to evaporate 3.06 ml of ethyl chloride. To do this, we need to know the heat of vaporization of ethyl chloride, which is 27.5 kJ/mol.
We can use the molar mass of ethyl chloride (64.5 g/mol) to convert 3.06 ml to moles, which is 0.0474 mol.
Next, we can use the heat of vaporization and the number of moles to calculate the energy required:
Energy = heat of vaporization x number of moles
Energy = 27.5 kJ/mol x 0.0474 mol
Energy = 1.30 kJ
Therefore, the amount of heat required to evaporate 3.06 ml of ethyl chloride at 25°C is 1.30 kJ.
Ethyl chloride (C2H5Cl) is a topical anesthetic, which can numb the skin when sprayed as a liquid. The energy absorbed during the evaporation process cools the skin, making it an effective anesthetic. To determine the heat (in kJ) required to evaporate 3.06 mL of ethyl chloride at 25°C, we need to consider the specific heat of vaporization, which is 26.4 kJ/mol for ethyl chloride.
First, convert 3.06 mL to moles by dividing the volume by the molar volume of ethyl chloride (62.5 g/mol and a density of 0.92 g/mL):
3.06 mL * 0.92 g/mL = 2.8152 g
2.8152 g / 62.5 g/mol = 0.04504 mol
Next, multiply the moles by the heat of vaporization:
0.04504 mol * 26.4 kJ/mol = 1.1891 kJ
So, 1.1891 kJ of heat is required to evaporate 3.06 mL of ethyl chloride at 25°C.

To know more about vaporization visit:

https://brainly.com/question/30078883

#SPJ11

Select the atom in each compound that does not follow the octet rule. Highlight the appropriate atoms by clicking on them. Part G
Select the atom in each compound that does not follow the octet rule.
Highlight the appropriate atoms by clicking on them.
NO
XeF4
OPBr3
BF3
ICl2

Answers

The octet rule states that atoms tend to gain, lose, or share electrons in order to have a full outer shell of eight electrons.

In the compound NO, the nitrogen atom does not follow the octet rule because it only has seven valence electrons. In XeF4, the xenon atom does not follow the octet rule because it has twelve valence electrons. In OPBr3, the phosphorus atom does not follow the octet rule because it has ten valence electrons. In BF3, the boron atom does not follow the octet rule because it only has six valence electrons. In ICl2, the iodine atom does not follow the octet rule because it only has seven valence electrons. It's important to note that some elements, such as hydrogen and helium, only need two valence electrons to have a full outer shell.

To know more about octet rule visit:

https://brainly.com/question/30779148

#SPJ11

choose the most appropriate reagent(s) to alkylate ethyl acetoacetate with bromoethane.

Answers

The most appropriate reagent(s) to alkylate ethyl acetoacetate with bromoethane is sodium ethoxide (NaOEt).

When alkylating ethyl acetoacetate with bromoethane, the most appropriate reagent to use is typically a base that can promote the reaction by abstracting a proton from the alpha carbon of the ethyl acetoacetate, thereby generating the enolate ion. The enolate ion will then react with the alkylating agent, bromoethane, resulting in the alkylation of ethyl acetoacetate. Sodium ethoxide is prepared by dissolving sodium metal in ethanol, followed by the addition of bromoethane and ethyl acetoacetate. The reaction proceeds under reflux conditions.

To learn more about alkylation click here https://brainly.com/question/31973951

#SPJ11

which of the following reactions will result in a titration curve that has an equivalence point with ph > 7? a. hclo2(aq) with koh(aq) b. hclo3(aq) with naoh(aq) c. nh3(aq) with hclo3(aq) d. lioh(aq) with hclo4(aq) e. both c and d

Answers

Both option C (NH3(aq) with HClO3(aq)) and option D (LiOH(aq) with HClO4(aq)) will result in a titration curve with an equivalence point with pH > 7.

This is because the strong acid (HClO3 and HClO4) will be neutralized by the weak base (NH3 and LiOH) resulting in a basic solution at the equivalence point. The other options (A and B) will result in an acidic solution at the equivalence point since the strong acid will fully ionize and neutralize the weak base. It's important to note that the pH at the equivalence point depends on the strength of the acid and base used in the titration. NH3(aq) with HClO3(aq). This is because NH3 is a weak base and HClO3 is a strong acid. At the equivalence point, the weak base NH3 will react with the strong acid HClO3, forming NH4+ and ClO3- ions. The NH4+ ion can partially hydrolyze water, producing OH- ions, which increases the pH above 7. The other reactions involve strong acids with strong bases or weak acids with strong bases, resulting in pH levels around 7 or lower.

To know more about titration visit:

https://brainly.com/question/31870069

#SPJ11

ron pyrite (fool's gold) is iron(ii) sulfide. what is its formula? group of answer choices fe2s3 fes feso3 feso4

Answers

The formula for iron pyrite, also known as fool's gold, is FeS2.

This means that it consists of one iron atom and two sulfur atoms. It is called fool's gold because it has a metallic luster and is often mistaken for real gold by amateur gold miners. Iron pyrite is an important mineral as it is a source of sulfur and also contains iron, which is a valuable metal used in many industries. However, it is not considered a reliable source of iron as it often contains impurities and is difficult to extract. In addition, it can also cause environmental problems if not properly managed as it can release sulfuric acid when exposed to air and water.

To know more about pyrite visit:

https://brainly.com/question/13435246

#SPJ11

given a 0.1 m solution of each of the following acids, place the following in order of decreasing ph. 1. hbro2. 2. hbro3. 3. hbro. 4. hbro4

Answers

The order of decreasing pH for the given 0.1 M solutions of acids is: 4. HBrO4 > 2. HBrO3 > 1. HBrO2 > 3. HBrO.

The formula for Ka is Ka = [H+][A-]/[HA]. where [H+] is the concentration of hydrogen ions, [A-] is the concentration of the conjugate base, and [HA] is the concentration of the acid. Using the given concentrations of 0.1 M for each acid, we can calculate their Ka values:

1. HBrO2: Ka = 1.3 x 10^-2

2. HBrO3: Ka = 6.6 x 10^-5

3. HBrO: Ka = 2.3 x 10^-9

4. HBrO4: Ka = 2.3 x 10^-1

From these values, we can see that HBrO4 is the strongest acid (highest Ka), followed by HBrO2, then HBrO3, and finally HBrO (weakest acid, lowest Ka). Therefore, the order of decreasing pH for the given acids is:

1. HBrO4

2. HBrO2

3. HBrO3

4. HBrO

To know more about pH

https://brainly.com/question/12609985

#SPJ11

identify the titration curve for a monoprotic weak acid titrated

Answers

The titration curve for a monoprotic weak acid titration starts with a relatively flat acid buffer region, followed by a sharp pH increase at the equivalence point, and then a steep increase in pH in the basic region.

What is titration curve?
A titration curve is a graphical representation of the pH or another relevant parameter of a solution being titrated against another solution. It shows the change in the measured property as a function of the volume of the titrant added.

A titration curve for a monoprotic weak acid titration typically exhibits a characteristic shape. It starts with a relatively flat region where the pH remains relatively constant. This region is known as the acid buffer region.

As the strong base is added, the pH begins to increase slowly due to the neutralization of the weak acid by the base. Eventually, a sharp increase in pH is observed as the equivalence point is approached.

After the equivalence point, as more strong base is added, the excess hydroxide ions from the base cause the pH to increase rapidly. This region is called the basic region, and the pH rises steeply.

Therefore, the titration curve for a monoprotic weak acid titration starts with a relatively flat acid buffer region, followed by a sharp pH increase at the equivalence point, and then a steep increase in pH in the basic region.

To learn more about titration curve,

https://brainly.com/question/3130161

#SPJ4

A reaction has ΔHrxn=−138kJ and ΔSrxn=283J/K. At what temperature is the change in entropy for the reaction equal to the change in entropy for the surroundings?

Answers

The change in entropy for the reaction is equal to the change in entropy for the surroundings at approximately 490 K.



We know that ΔSrxn = 283 J/K, and we want to find the temperature at which ΔSsystem = -ΔSsurroundings. To find ΔSsurroundings, we use the equation ΔSsurroundings = -ΔHrxn/T, where T is the temperature in Kelvin.
Plugging in the given values, we get:
283 J/K + (-(-138 kJ/T)) = 0
Simplifying this equation, we get:
138000 J/T + 283 J/K = 0
To solve for T, we need to convert the units to a common base. Let's convert kJ to J and combine the terms:
138000000 J/T + 283 J/K = 0
Now we can solve for T:
T = -138000000/283 = -487.6 K
This is a negative temperature, which doesn't make sense physically. Therefore, there is no temperature at which the change in entropy for the reaction is equal to the change in entropy for the surroundings.

To know  more about entropy

https://brainly.com/question/419265

#SPJ11

after takeoff you encounter a temperature inversion you should expect

Answers

When encountering a temperature inversion after takeoff, you should expect changes in atmospheric conditions, such as a decrease in temperature with increasing altitude instead of the usual temperature increase.

This can lead to challenges in aircraft performance and may require adjustments in flight operations. A temperature inversion refers to a deviation from the typical atmospheric temperature pattern where temperature decreases with increasing altitude. In a standard atmosphere, the temperature usually decreases by about 2 degrees Celsius per 1,000 feet of altitude gain. However, in a temperature inversion, there is a reversal of this pattern, resulting in a layer of warmer air above cooler air.

Encountering a temperature inversion after takeoff can have several implications for aircraft operations. Firstly, the inversion layer acts as a boundary that can affect the performance of the aircraft. It can cause changes in air density, which may result in alterations to lift and drag forces. These changes can impact aircraft stability, climb performance, and fuel efficiency.

Secondly, a temperature inversion can lead to the formation of fog or low-level clouds within the inversion layer. Moisture present in the cooler air below the inversion may condense as it comes into contact with the warmer air above. This can reduce visibility and pose challenges for navigation.

In such situations, pilots need to be aware of the temperature inversion and its effects on aircraft performance. They may need to adjust their flight operations, such as modifying climb rates or considering alternate routes to avoid adverse conditions. Communicating with air traffic control and staying informed about weather updates can help pilots make informed decisions and ensure a safe flight.

To learn more about temperature inversion refer:

https://brainly.com/question/3083526

#SPJ11

a certain substance has a heat of vaporization of 35.36 kj/mol. at what kelvin temperature will the vapor pressure be 5.50 times higher than it was at 343 k?

Answers

To solve this problem, we can use the Clausius-Clapeyron equation:
ln(P2/P1) = (ΔHvap/R) * (1/T1 - 1/T2)

Where P1 is the initial vapor pressure at T1 = 343 K, P2 is the vapor pressure we're trying to find, ΔHvap is the heat of vaporization, R is the gas constant, and T2 is the temperature we're looking for in Kelvin.
We know that P2/P1 = 5.50, and ΔHvap = 35.36 kJ/mol. Plugging in these values and solving for T2, we get:
ln(5.50) = (35.36 kJ/mol / R) * (1/343 K - 1/T2)
Simplifying:
T2 = 35.36 kJ/mol / (R * (1/343 K - ln(5.50)))
Using R = 8.314 J/mol·K, we get T2 ≈ 405 K. Therefore, the kelvin temperature at which the vapor pressure will be 5.50 times higher than it was at 343 K is approximately 405 K.
Using the Clausius-Clapeyron equation, we can determine the temperature at which the vapor pressure will be 5.50 times higher than at 343 K. The equation is:
ln(P2/P1) = -ΔHvap/R * (1/T2 - 1/T1)
where P2 and P1 are the vapor pressures at temperatures T2 and T1, ΔHvap is the heat of vaporization, and R is the gas constant (8.314 J/mol·K). Given that P2 = 5.50P1 and ΔHvap = 35.36 kJ/mol, we can plug in the values:
ln(5.50) = -35,360 J/mol / 8.314 J/mol·K * (1/T2 - 1/343)
Solve for T2:
T2 = 1 / (1/343 + (ln(5.50) * 8.314 J/mol·K / 35,360 J/mol)) ≈ 432 K
So, at 432 K, the vapor pressure will be 5.50 times higher than at 343 K.

To know more about Clapeyron visit:

https://brainly.com/question/29409537

#SPJ11

balanced chemical equation for synthesis of biphenyl from bromobenzene equation

Answers

A balanced chemical equation is a representation of a chemical reaction that shows the relative numbers of reactant molecules or atoms and product molecules or atoms involved in the reaction. The balanced chemical equation for the synthesis of biphenyl from bromobenzene.

The reaction involves a coupling of two bromobenzene molecules using a metal catalyst, typically magnesium (Mg). Here is the balanced equation: 2 C6H5Br + Mg → C12H10 + MgBr2
In this reaction, two bromobenzene (C6H5Br) molecules react with magnesium to produce biphenyl (C12H10) and magnesium bromide (MgBr2) as byproducts.

Learn more about Catalyst here ;

https://brainly.com/question/24430084

#SPJ11

why would 1 3 cyclohexadiene undergo dehydrogenation readily?
a. It is easily reduced. b. Hydrogen is a small molecule. c. 1, 3-Cyclohexadiene has no resonance energy. d. It would gain considerable stability by becoming benzene. e. It would not undergo dehydrogenation.

Answers

The correct answer is d. 1,3-cyclohexadiene undergoes dehydrogenation readily because it would gain considerable stability by becoming benzene. Benzene is a highly stable and aromatic compound that possesses resonance energy due to its delocalized pi-electrons.

Dehydrogenation is a chemical reaction that involves the removal of hydrogen from a molecule. In the case of 1,3-cyclohexadiene, the removal of two hydrogen atoms would result in the formation of benzene. This transformation would result in the formation of a highly stable compound, which has much lower energy than its precursor.
Moreover, 1,3-cyclohexadiene is an unsaturated compound that possesses a double bond between two carbon atoms. This double bond makes the molecule reactive towards dehydrogenation. During dehydrogenation, the double bond is broken, and the two hydrogen atoms that were attached to the carbon atoms are removed. As a result, the molecule undergoes a structural change, and a highly stable compound, benzene, is formed.
In conclusion, 1,3-cyclohexadiene undergoes dehydrogenation readily because it would gain considerable stability by becoming benzene. This transformation is a result of the removal of two hydrogen atoms from the molecule, and it occurs due to the reactivity of the double bond that the molecule possesses.

To know more about dehydrogenation visit:

https://brainly.com/question/23186275

#SPJ11

determine the ph if the concentration of propanoic acid was 1.3 x 10-3 m and the concentration of propanoate was 1.8 x 10-2 m. is this ph in the range of the buffer? (4 points)

Answers

The equation for the dissociation of propanoic acid is:
CH3CH2COOH ⇌ CH3CH2COO- + H+

The Ka value for propanoic acid is 1.3 x 10^-5.
Using the equation for Ka, we can calculate the concentration of H+ ions in the solution:
Ka = [H+][CH3CH2COO-]/[CH3CH2COOH]
1.3 x 10^-5 = [H+][1.8 x 10^-2]/[1.3 x 10^-3]
[H+] = 2.23 x 10^-4 M
Taking the negative logarithm of the H+ concentration gives us the pH:
pH = -log[H+] = -log(2.23 x 10^-4) = 3.65
This pH value is within the range of the buffer, which is typically within one pH unit of the pKa value. The pKa value for propanoic acid is 4.87, so the buffer range would be between pH 3.87 and 5.87. Therefore, the calculated pH of 3.65 falls within this range and the solution can be considered a buffer.
To determine the pH of a solution containing propanoic acid (1.3 x 10^-3 M) and propanoate ion (1.8 x 10^-2 M), we can use the Henderson-Hasselbalch equation: pH = pKa + log([A-]/[HA]). Propanoic acid has a pKa value of 4.87. Plug in the concentrations: pH = 4.87 + log(1.8 x 10^-2 / 1.3 x 10^-3) = 4.87 + 1.17 = 6.04. The pH is 6.04, and since it is within one unit of the pKa (4.87), this solution can be considered a buffer.

To know more about propanoic visit:

https://brainly.com/question/14461903

#SPJ11

For the following example, identify the following. 2 Cl2O(g) + 2 C12(g) + O2(g) O at low temperature, the reaction is spontaneous and AG <0 and at high temperature, the reaction is spontaneous and AG < 0 at low temperature, the reaction is nonspontaneous and AG >0 and at high temperature, the reaction is spontaneous and AGO at low temperature, the reaction is spontaneous and AG <0 and at high temperature, the reaction is nonspontaneous and AG > O at low temperature, the reaction is nonspontaneous and AG >0 and at high temperature, the reaction is nonspontaneous and AG > 0 It is not possible to determine without more information.

Answers

The given example shows the reaction between 2 Cl2O(g), 2 C12(g), and O2(g). The spontaneity of the reaction is determined by the value of Gibbs free energy (AG). At low temperature, the reaction is spontaneous with AG<0, which indicates that the reaction can occur without any external energy.

This is because the reactants have a lower energy state than the products. At high temperature, the reaction is also spontaneous with AG<0, indicating that increasing the temperature increases the rate of reaction. However, at low temperature, the reaction is nonspontaneous with AG>0, meaning that external energy is required for the reaction to occur. This is because the products have a lower energy state than the reactants. Finally, at high temperature, the reaction is also nonspontaneous with AG>0, suggesting that increasing the temperature does not favor the reaction. Temperature plays a crucial role in determining the spontaneity of the reaction by affecting the energy of the reactants and products.

To know more about Reaction visit:

https://brainly.com/question/30344509

#SPJ11

Other Questions
Evaluate the integral. 1 S (8x + (x) dx 7x 0 1 | (8x + (x) dx= = 0 (Type an exact answer.) a mass of 780 kg is hanging from a crane (neglect the mass of the cable and the hook). while the mass is being lowered, it is slowing down with 3.2 m/s2. what is the tension on the cable? where on the cell are the conjugating paramecium caudatum joined , Let T be the linear transformation on R2 defined by T(x, y) = (-y, x). (1) What is the matrix of T with respect to an ordered basis a = {V1, V2}, where v1 (1, 2), v2 = (1, -1)? (2) Penn Company has $20,000 of dividends in arrears. Based on this information, which of the following statements is false? a. Dividends in arrears are not considered to be liabilities. b. An obligation for dividends in arrears exists only after the board of directors declares payment. c. The amount of dividends in arrears should be disclosed in the notes to the financial statements. d. The investment community looks favorably on companies with dividends in arrears, since the money is redirected toward more important growth opportunities Use good paper to draw two different rectangles with a given parameter make the dimensions in the area of each rectangle circle rectangle that has a greater area **THE FIRST QUESTION** Find the derivative of the function. 29) y = 9 sin (7x - 5) 30) y = cos (9x2 + 2) 31) y = sec 6x ethnocentrism subculture has the same characteristics or traits. T/F? For the sequences, find the first/next five terms of each one (0) a = (-1)^+ n+1 an 6.) a = -a -1 + 2n-; = 1, a = 3 what is the order of steps for configuring a security policy? TRUE / FALSE. genetic mutations invariably cause harm to people who inherit them. A truck rental company has a flat service fee and then costs a certain amount per mile driven. Suppose one family rents a truck, drives 50 miles and their cost is $111.25. Suppose another family rents a truck, drives 80 miles, and their cost is $160. a) Find the linear equation for the cost of renting a truck as a function of the number of miles they drive. b) Use the equation to find the cost if they drove 150 miles. c) How many miles did a renter drive if their cost was $125? A thermometer reading 19 Celsius is placed in an oven preheated to a constant temperature. Through a glass window in the oven door, an observer records that the thermometer read 27 after 26 seconds and 28 after 52 seconds. How hot is the oven? dentify sections that appear on the cash budget. (select all that apply.) multiple select question. a.petty cash b.cash payments c.free cash d.flow investing e.section financingf.section cash g.reserves cash h.receipts Read each statement below and label it as true or false.1. A monopolistic competitor, much like a firm in perfect competition, sells its product at a point where price is equal to marginal cost.2.Advertising can play a role as an indirect signal of product quality to customers.3.Monopolistically competitive industries are more likely to make use of advertising to create products that catch on in mainstream popularity than industries in perfect competition.4.In the long run, monopolistic competitors make a similar amount of profit to monopolists, since in both cases the firm demand curves are downward sloping, and at the profit maximizing point marginal cost is equal to marginal revenue.5.In the short term, a monopolistic competitor will make a profit if the demand curve is above the average total cost curve at some point. An emergency that disrupts the normal water supply may require the use of A. low-flush toilets that use less drinkable water. B. single-use disposable plates, forks, knives, spoons. C. water transported from home in large open top containers. D. Moist towelettes for wiping off dishes and utensils. is it illegal to be a personal trainer without certification During the campaign, Michelle and Barack felt regret after they ---.A. were blamed for a violent confrontation between two groups in TexasB. allowed Sasha and Malia to give a TV interview with them in MontanaC. endorsed a candidate in lowa whose radical ideas they hadn't known aboutD. were criticized for taking a trip to CubaIts for AR and i really need answers marutacturer estimates that a new pizza oven wil sol 3 to 5 urts in the first year. 10 to 20 units in the second year, 20 to 50 units in the third year, and 50 units per year thesafer. Salas are brisk after introduction, with 10 units being distrtuted by the end of the first year. What should the manufacturer do to estimate production requirements to the second year? Use a simple moving average to estimate 10 units, the same as the first-year distribution Establish a test market in a location that represents the overall market Use a weighted moving average to estimate 20 to 40 units, double the second-year estimate Maintain the original estimate for the second year: 10 to 20 units NEXT > BOOKMARK Find the total area below the curve f(x) = (2-x)(x-8) and above the x-axis Arower : 36