Compute the imit (x²-1 Exel Im f(x), where f(x) = X-1 |3x+1, FX21 a. None of the other choices is correct. 06.2 O c The limit does not exist d.-1 Oe3

Answers

Answer 1

The limit of (x^2 - 1)/(√(3x + 1) - 1) as x approaches 2 does not exist.

To evaluate the limit, we can substitute the value of x into the given expression and see if it converges to a finite value. Plugging in x = 2, we get:

[(2^2) - 1] / [√(3(2) + 1) - 1]

= (4 - 1) / (√(6 + 1) - 1)

= 3 / (√7 - 1)

Since the denominator contains a radical term, we need to rationalize it. Multiplying both the numerator and denominator by the conjugate of the denominator (√7 + 1), we have:

3 / (√7 - 1) * (√7 + 1) / (√7 + 1)

= (3 * (√7 + 1)) / ((√7 - 1) * (√7 + 1))

= (3√7 + 3) / (7 - 1)

= (3√7 + 3) / 6

Therefore, the value of the expression at x = 2 is (3√7 + 3) / 6. However, this value does not represent the limit of the expression as x approaches 2, as it only gives the value at that specific point.

To determine the limit, we need to investigate the behavior of the expression as x approaches 2 from both sides.

By analyzing the behavior of the numerator and denominator separately, we find that as x approaches 2, the numerator approaches a finite value, but the denominator approaches zero. Since we have an indeterminate form of 0/0, the limit does not exist.

Learn more about finite value here:

https://brainly.com/question/5004992

#SPJ11


Related Questions

If a factory produces an average of 600 items with a variance of 200, what can be said about the probability that the factory will produce between 400 and 800 items next week?

Answers

Given an average of 600 items and a variance of 200, the probability that the factory will produce between 400 and 800 items next week can be determined using the normal distribution and the concept of standard deviation.

The variance provides a measure of how spread out the data is from the mean. In this case, with a variance of 200, we can calculate the standard deviation by taking the square root of the variance, which is approximately 14.14. Next, we can use the concept of the normal distribution to estimate the probability of the factory producing between 400 and 800 items.

Since the distribution is approximately normal, we can use the empirical rule or the standard deviation to estimate the probabilities. Using the empirical rule, which states that in a normal distribution, approximately 68% of the data falls within one standard deviation of the mean, we can estimate that there is a high probability (approximately 68%) that the factory will produce between 400 and 800 items next week.

Learn more about probability here:

https://brainly.com/question/31828911

#SPJ11

Use the binomial theorem to find the coefficient of x^a y^b in the expansion of (5x^2 +2y^3)^6, where a) a 6, b-9 b) a 2, b 15. c) a 3, b 12. d) a 12, b 0 e) a 8, b 9

Answers

the coefficients for the given terms are a) 5005, b) 136, c) 455, d) 1, and e) 0, based on the binomial theorem.

The binomial theorem states that for any positive integers n and k, the coefficient of [tex]x^(n-k) y^k[/tex]in the expansion of [tex](a+b)^n[/tex] is given by the binomial coefficient C(n, k) = [tex]n! / (k! (n - k)!).[/tex]

a) For [tex](5x^2 + 2y^3)^6[/tex], we need to find the coefficient of [tex]x^6 y^9[/tex]. Since the power of x is 6 and the power of y is 9, we have k = 6 and n - k = 9. Using the binomial coefficient formula, we get C(15, 6) =[tex]15! / (6! * 9!)[/tex]= 5005.

b) For the term [tex]x^2 y^15[/tex], we have k = 2 and n - k = 15. Using the binomial coefficient formula, we get C(17, 2) = 17! / (2! × 15!) = 136.

c) For[tex]x^3 y^12[/tex], we have k = 3 and n - k = 12. Using the binomial coefficient formula, we get C(15, 3) = 15! / (3! × 12!) = 455.

d) For [tex]x^12 y^0[/tex], we have k = 12 and n - k = 0. Using the binomial coefficient formula, we get C(12, 12) = 12! / (12! × 0!) = 1.

e) For [tex]x^8 y^9[/tex], there is no such term in the expansion because the power of y is greater than the available power in [tex](5x^2 + 2y^3)^6.[/tex]Therefore, the coefficient is 0.

learn more about binomial theorem here:

https://brainly.com/question/30095070

#SPJ11

You invested 12,000 in an account at 2.3% compounded monthly. How long will it take you to get to 20000

Answers

It will take 22 years and 3 months to get the present value of $12,000 invested at 2.3% compounded monthly to get to $20,000 (future value).

How the period is determined:

The period that it will take the present value to reach a certain future value can be determined using an online finance calculator with the following parameters for periodic compounding.

I/Y (Interest per year) = 2.3%

PV (Present Value) = $12,000

PMT (Periodic Payment) = $0

FV (Future Value) = $20,000

Results:

N = 266.773

266.73 months = 22 years and 3 months (266.73 ÷ 12)

Total Interest = $8,000.00

Learn more about compounded interest at https://brainly.com/question/28020457.

#SPJ1

Use Stokes' Theorem to evaluate ∫⋅∫CF⋅dr where
(x,y,z)=x+y+5(x2+y2)F(x,y,z)=xi+yj+5(x2+y2)k and C is the
boundary of the part of the pa

Answers

To evaluate the line integral ∮C F⋅dr using Stokes' Theorem, where F(x, y, z) = xi + yj + 5(x² + y²)k and C is the boundary of a part of the plane z = 1 - x² - y²

Stokes' Theorem states that the line integral of a vector field F along a closed curve C is equal to the surface integral of the curl of F over the surface S bounded by C. In this case, we want to evaluate the line integral over the boundary curve C, which is part of the plane z = 1 - x² - y².

To apply Stokes' Theorem, we first calculate the curl of F, which involves taking the cross product of the del operator and F. The curl of F is ∇ × F = (0, 0, -2x - 2y - 2x² - 2y²). Next, we find the surface S bounded by the curve C, which is part of the plane z = 1 - x² - y² that lies above C. The surface S can be parametrized in terms of the variables x and y.

Finally, we integrate the dot product of the curl of F and the surface normal vector over the surface S to obtain the surface integral. This gives us the value of the line integral ∮C F⋅dr using Stokes' Theorem.


Learn more about Stoke's Theorem here: brainly.in/question/33064157
#SPJ11

final test, help asap
25. [-/3.7 Points] DETAILS LARCALCET7 3.6.060. Find dy/dx by implicit differentiation. x = 9 In(y²-3), (0, 2) dy dx Find the slope of the graph at the given point. dy dx Submit Answer MY NOTES ASK YO

Answers

To find dy/dx by implicit differentiation for the equation x = 9ln(y²-3), we differentiate both sides of the equation with respect to x using the chain rule. After finding the derivative, we can substitute the given point (0, 2) into the equation to find the slope of the graph at that point.

Given the equation x = 9ln(y²-3), we differentiate both sides with respect to x. Using the chain rule, the derivative of x with respect to x is 1, and the derivative of ln(y²-3) with respect to y is (2y)/(y²-3). Therefore, we have:

1 = 9(2y)/(y²-3) * (dy/dx)

Simplifying the equation, we find:

dy/dx = (y²-3)/(18y)

To find the slope of the graph at the point (0, 2), we substitute the x-coordinate (0) and the y-coordinate (2) into the equation:

slope = (2²-3)/(18*2) = (1/36)

Therefore, the slope of the graph at the point (0, 2) is 1/36.

To learn more about implicit differentiation : brainly.com/question/11887805

#SPJ11

show steps!
find the radius and the interval of convergence of the
series
E (summation/sigma symbol) (with infinity sign on top and on the
bottom of the symbol, it is k=1) (x-2)^k / k*4^k.

Answers

The given series has a radius of convergence of 4 and converges for x within the interval (-2, 6), including the endpoints.

To find the radius and interval of convergence of the series, we can use the ratio test. The ratio test states that for a series Σaₙxⁿ, if the limit of |aₙ₊₁ / aₙ| as n approaches infinity exists and is equal to L, then the series converges if L < 1 and diverges if L > 1.

Applying the ratio test to the given series:

|((x - 2)^(k+1) / (k+1) * 4^(k+1)) / ((x - 2)^k / (k * 4^k))| = |(x - 2) / 4|.

For the series to converge, we need |(x - 2) / 4| < 1. This implies that -4 < x - 2 < 4, which gives -2 < x < 6.

Learn more about convergence here:

https://brainly.com/question/29258536

#SPJ11

2. Evaluate first octant. Ilxo zds, where S is part of the plane x + 4y +z = 10 in the

Answers

To evaluate the integral ∫∫∫_S x z ds in the first octant, where S is part of the plane x + 4y + z = 10, we need to determine the limits of integration and then evaluate the triple integral.

The given integral is a triple integral over the surface S defined by the equation x + 4y + z = 10. To evaluate this integral in the first octant, we need to determine the limits of integration for x, y, and z.

In the first octant, the values of x, y, and z are all positive. We can rewrite the equation of the plane as z = 10 - x - 4y. Since z is positive, we have the inequality z > 0, which gives us 10 - x - 4y > 0. Solving this inequality for y, we find y < (10 - x) / 4.

The limits of integration for x will depend on the region of the plane S in the first octant. We need to determine the range of x-values such that the corresponding y-values satisfy y < (10 - x) / 4. This can be done by considering the intersection points of the plane S with the coordinate axes.

Let's consider the x-axis, where y = z = 0. Substituting these values into the equation of the plane, we get x = 10. Therefore, the lower limit of integration for x is 0, and the upper limit is 10.

For y, the limits of integration will depend on the corresponding x-values. The lower limit is 0, and the upper limit can be found by setting y = (10 - x) / 4. Solving this equation for x, we obtain x = 10 - 4y. Therefore, the upper limit of integration for y is (10 - x) / 4.

The limits of integration for z will be 0 as the lower limit and 10 - x - 4y as the upper limit.

Now, we can evaluate the triple integral ∫∫∫_S x z ds over the first octant by integrating x, y, and z over their respective limits of integration.

Learn more about triple integral here:

https://brainly.com/question/30404807

#SPJ11

If an industry invests x thousand labor-hours, 105x520, and Sy million, 1sys2, in the production of thousand units of a certain item, then N is given by the following formula. N(x.y)=x0.80 0.20 What i

Answers

To find the derivatives of the given functions, we will apply the power rule and the chain rule as necessary. Answer :   0.20 * x^0.80 * y^(0.20 - 1) = 0.20 * x^0.80 * y^(-0.80)

a) f(x) = 2 ln(x) + 12:

Using the power rule and the derivative of ln(x) (which is 1/x), we have:

f'(x) = 2 * (1/x) + 0 = 2/x

b) g(x) = ln(sqrt(x^2 + 3)):

Using the chain rule and the derivative of ln(x) (which is 1/x), we have:

g'(x) = (1/(sqrt(x^2 + 3))) * (1/2) * (2x) = x / (x^2 + 3)

c) H(x) = sin(sin(2x)):

Using the chain rule and the derivative of sin(x) (which is cos(x)), we have:

H'(x) = cos(sin(2x)) * (2cos(2x)) = 2cos(2x) * cos(sin(2x))

For the given formula N(x, y) = x^0.80 * y^0.20, it seems to be a multivariable function with respect to x and y. To find the partial derivatives, we differentiate each term with respect to the corresponding variable.

∂N/∂x = 0.80 * x^(0.80 - 1) * y^0.20 = 0.80 * x^(-0.20) * y^0.20

∂N/∂y = 0.20 * x^0.80 * y^(0.20 - 1) = 0.20 * x^0.80 * y^(-0.80)

Please note that these are the partial derivatives of N with respect to x and y, respectively, assuming the given formula is correct.

Learn more about derivative  : brainly.com/question/24062595

#SPJ11


Please answer all questions 9-12, thankyou.
9. Let l1 and 12 be the lines 11: I=2 + y = - 3t 2= -1 + 4t 12: I=5-t y=1+ 3t z=1-4t (a) Are l, and l2 parallel, perpendicular or neither? What is the distance between these lines? (b) Find an equatio

Answers

In questions 9-12, we are given two lines l1 and l2. In part (a), we determine whether l1 and l2 are parallel, perpendicular, or neither, and find the distance between the lines. In part (b), we find an equation for the plane that contains both lines.

9. (a) To determine whether l1 and l2 are parallel, perpendicular, or neither, we examine their direction vectors. The direction vector of l1 is (-3, 4, -1) and the direction vector of l2 is (1, 3, -4). Since the dot product of the direction vectors is not zero, l1 and l2 are neither parallel nor perpendicular.

To find the distance between the lines, we can use the formula for the distance between a point and a line. We select a point on one line, such as (2, -1, 1) on l1, and find the shortest distance to the other line. The distance between the lines is the magnitude of the vector connecting the two points, which is obtained by taking the square root of the sum of the squares of the differences of the coordinates.

(b) To find an equation for the plane that contains both lines, we can use the cross product of the direction vectors of l1 and l2 to find a normal vector to the plane. The normal vector is obtained by taking the cross product of (-3, 4, -1) and (1, 3, -4). This gives us a normal vector of (5, 13, 13).

Using the coordinates of a point on one of the lines, such as (2, -1, 1) on l1, we can write the equation of the plane as 5(x - 2) + 13(y + 1) + 13(z - 1) = 0.

Therefore, l1 and l2 are neither parallel nor perpendicular, the distance between the lines can be found using the formula for the distance between a point and a line, and the equation of the plane that contains both lines can be determined using the cross-product of the direction vectors and a point on one of the lines.

Learn more about vector here:

https://brainly.com/question/24256726

#SPJ11

For what values of a is F = (x² + yz)i + a(y + 2zx)j + (xy+z)k a conservative vector field? For this value of a, find a potential such that F= Vy. (b) A particle is moved from the origin (0, 0)

Answers

(a) For a = 1, the vector field F is conservative, (b) For a = 1, the potential function V such that F = ∇V is: V = (1/3)x³ + xy z + (y²/2 + 2xyz) + xyz + z²/2 + C

To determine the values of a for which the vector field F = (x² + yz)i + a(y + 2zx)j + (xy+z)k is conservative, we need to check if the curl of F is zero. If the curl is zero, then F is conservative.

The curl of a vector field F = P i + Q j + R k is given by the following determinant:

curl(F) = ( ∂R/∂y - ∂Q/∂z ) i + ( ∂P/∂z - ∂R/∂x ) j + ( ∂Q/∂x - ∂P/∂y ) k

The curl of F:

∂R/∂y = 1

∂Q/∂z = a

∂P/∂z = -2ax

∂R/∂x = y

∂Q/∂x = 0

∂P/∂y = 0

Plugging these values into the curl formula, we have:

curl(F) = (1 - a) i + (-2ax) j + y k

For the curl to be zero, each component of the curl must be zero. Therefore, we have the following conditions:

1 - a = 0  (from the i-component)

-2ax = 0  (from the j-component)

y = 0     (from the k-component)

From the first condition, we find that a = 1.

Substituting a = 1 into the second and third conditions, we have:

-2x = 0

y = 0

∴ x = 0 and y = 0.

Therefore, the vector field F is conservative for a=1.

To obtain a potential function V such that F = ∇V, we integrate each component of F with respect to the corresponding variable:

V = ∫(x² + yz) dx = (1/3)x³ + xy z + g(y,z)

V = ∫a(y + 2zx) dy = a(y²/2 + 2xyz) + h(x,z)

V = ∫(xy + z) dz = xyz + z²/2 + k(x,y)

Combining these terms, we have:

V = (1/3)x³ + xy z + a(y²/2 + 2xyz) + xyz + z²/2 + C

Therefore, for a = 1, the potential function V such that F = ∇V is:

V = (1/3)x³ + xy z + (y²/2 + 2xyz) + xyz + z²/2 + C

To know more about  potential function refer here:

https://brainly.com/question/28156550#

#SPJ11

6. For the function f(x) = *** - x2 +1, (a) [6] find all critical numbers. (b) [6] determine the intervals of increase or decrease. (c) [6] find the local maximum and local minimum values.

Answers

(a) The critical number is x = 0.

(b) The function is increasing on (-∞, 0) and decreasing on (0, +∞).

(c) The function has a local maximum at x = 0, with a value of f(0) = 1.

To find the critical numbers of the function f(x) = -x^2 + 1:

(a) Critical numbers occur when the derivative of the function is equal to zero or undefined. Let's first find the derivative of f(x):

f'(x) = -2x

To find the critical numbers, we set f'(x) = 0 and solve for x:

-2x = 0

x = 0

Therefore, the critical number of the function is x = 0.

(b) To determine the intervals of increase or decrease, we examine the sign of the derivative on different intervals.

On the interval (-∞, 0), we can choose a test point, let's say x = -1, and substitute it into the derivative:

f'(-1) = -2(-1) = 2

Since f'(-1) = 2 is positive, the derivative is positive on the interval (-∞, 0). This means that the function is increasing on this interval.

On the interval (0, +∞), we can choose a test point, let's say x = 1, and substitute it into the derivative:

f'(1) = -2(1) = -2

Since f'(1) = -2 is negative, the derivative is negative on the interval (0, +∞). This means that the function is decreasing on this interval.

Therefore, the function f(x) = -x^2 + 1 is increasing on (-∞, 0) and decreasing on (0, +∞).

(c) To find the local maximum and local minimum values, we examine the critical number and the behavior of the function around it.

At x = 0, the critical number, we can evaluate the function f(x):

f(0) = -(0)^2 + 1 = 1

Therefore, the function has a local maximum at x = 0, and the local maximum value is f(0) = 1.

Since the function is a downward-opening parabola, the local maximum at x = 0 is also the global maximum of the function.

There are no local minimum values for this function since it only has a local maximum.

To summarize:

(a) The critical number is x = 0.

(b) The function is increasing on (-∞, 0) and decreasing on (0, +∞).

(c) The function has a local maximum at x = 0, with a value of f(0) = 1.

To learn more about local maximum

https://brainly.com/question/14319836

#SPJ11

Use Green's Theorem to evaluate
∫c F · dr.
(Check the orientation of the curve before applying the theorem.)
F(x, y) = (y − cos y, x sin y), C is the circle (x − 3)^2 + (y + 5)^2 = 4 oriented clockwise

Answers

The value of the line integral ∫c F · dr, where F(x, y) = (y − cos y, x sin y), and C is the circle (x − 3)² + (y + 5)² = 4 oriented clockwise, is -4π.

What is Green's theorem?

One of the four calculus fundamental theorems, all four of which are closely related to one another, is the Green's theorem. Understanding the line integral and surface integral concepts will help you understand how the Stokes theorem is founded on the idea of connecting the macroscopic and microscopic circulations.

To use Green's Theorem to evaluate the line integral ∫c F · dr, we need to express the vector field F(x, y) = (y − cos y, x sin y) in terms of its components. Let's denote the components of F as P and Q:

P(x, y) = y − cos y

Q(x, y) = x sin y

Now, let's calculate the line integral using Green's Theorem:

∫c F · dr = ∬R (∂Q/∂x - ∂P/∂y) dA

Here, R represents the region enclosed by the curve C, and dA denotes the differential area element.

In this case, the curve C is a circle centered at (3, -5) with a radius of 2. Since the curve is oriented clockwise, we need to reverse the orientation by changing the sign of the line integral. We'll parameterize the curve C as follows:

x = 3 + 2cos(t)

y = -5 + 2sin(t)

where t varies from 0 to 2π.

Next, we need to calculate the partial derivatives of P and Q:

∂P/∂y = 1 + sin y

∂Q/∂x = sin y

Now, we can compute the line integral using Green's Theorem:

∫c F · dr = -∬R (sin y - (1 + sin y)) dA

            = -∬R (-1) dA

            = ∬R dA

Since the region R is the interior of the circle with a radius of 2, we can rewrite the integral as:

∫c F · dr = -∬R dA = -Area(R)

The area of a circle with radius 2 is given by πr², so in this case, it is π(2)² = 4π.

Therefore, the value of the line integral ∫c F · dr, where F(x, y) = (y − cos y, x sin y), and C is the circle (x − 3)² + (y + 5)² = 4 oriented clockwise, is -4π.

Learn more about Green's Theorem on:

https://brainly.com/question/23265902

#SPJ4

Given, y<−x+a and y>x+b
In the xy-plane, if (0,0) is a solution to the system of inequalities above, which of the following relationship between a and b must be true?
A.a>b
B.b>a
C.∣a∣>∣b∣
D.a=−b

Answers

The correct relationship between a and b that must be true in the given system of inequalities is ∣a∣ > ∣b∣. The answer is C

What is a system of inequalities?

A system of inequalities refers to a set of multiple inequalities that are considered simultaneously. The solution to the system consists of all the values that satisfy each inequality in the system. It represents a region in the coordinate plane where the shaded area encompasses all the valid solutions for the given set of inequalities.

Given the inequalities y < -x + a and y > x + b, we know that the point (0,0) satisfies both of these inequalities. Plugging in x = 0 and y = 0 into the inequalities, we get:

0 < a   (from y < -x + a)

0 > b   (from y > x + b)

From these equations, we can conclude that a must be greater than 0 (since 0 < a) and b must be less than 0 (since 0 > b). To compare their magnitudes, we take the absolute values:

∣a∣ > 0   (since a > 0)

∣b∣ < 0   (since b < 0)

Since the magnitude of a (∣a∣) is greater than the magnitude of b (∣b∣), the correct relationship is ∣a∣ > ∣b∣, which is option C.

To know more about inequalities, refer here:
https://brainly.com/question/2293190
#SPJ4

the distribution of the heights of five-year-old children has a mean of 42.5 inches. a pediatrician believes the five-year-old children in a city are taller on average. the pediatrician selects a random sample of 40 five-year-old children and measures their heights. the mean height of the sample is 44.1 inches with a standard deviation of 3.5 inches. do the data provide convincing evidence at the level that the mean height of five-year-old children in this city is greater than 42.5 inches? what is the test statistic for this significance test?

Answers

The test statistic for the significance test is calculated as 3.6.

To determine if there is convincing evidence that the mean height of five-year-old children in this city is greater than 42.5 inches, we can perform a hypothesis test.

The null hypothesis, denoted as [tex]H_0[/tex], assumes that the mean height is equal to 42.5 inches, while the alternative hypothesis, denoted as [tex]H_a[/tex], assumes that the mean height is greater than 42.5 inches.

Using the given sample data, we can calculate the test statistic.

The sample mean height is 44.1 inches, and the standard deviation is 3.5 inches.

Since the population standard deviation is unknown, we can use a t-test.

The formula for the t-test statistic is given by (sample mean - hypothesized mean) / (sample standard deviation / √n).

Plugging in the values, we have (44.1 - 42.5) / (3.5 / √40) ≈ 3.6.

This test statistic measures how many standard deviations the sample mean is away from the hypothesized mean under the assumption of the null hypothesis.

To determine if the data provides convincing evidence, we compare the test statistic to the critical value corresponding to the significance level chosen for the test.

If the test statistic exceeds the critical value, we reject the null hypothesis in favor of the alternative hypothesis, providing evidence that the mean height of five-year-old children in this city is greater than 42.5 inches.

Without specifying the chosen significance level, we cannot definitively state if the data provides convincing evidence.

However, if the test statistic of 3.6 exceeds the critical value for a given significance level, we can conclude that the data provides convincing evidence at that specific level.

Learn more about standard deviation here:

https://brainly.com/question/475676

#SPJ11

Use the Fundamental Theorem of Calculus to decide if the definite integral exists and either evaluate the integral or enter DNE if it does not exist. 4 ſ* (5 + eva) de Use the Fundamental Theorem of Calculus to decide if the definite integral exists and either evaluate the integral or enter DNE if it does not exist. 4 ſ* (5 + eva) de Use the Fundamental Theorem of Calculus to decide if the definite integral exists and either evaluate the integral or enter DNE if it does not exist. 4 ſ* (5 + eva) de

Answers

The definite integral of this expression does not exist and can be entered as DNE.

Let's see the further explanation:

The Fundamental Theorem of Calculus states that the definite integral of a continuous function from a to b is equal to the function f(b) - f(a)

In this case, the definite integral is 4 * (5 + e^v a) de which is not a continuous function.

The expression is not a continuous function because it relies on undefined variables. The variable e^v has no numerical value, and thus it is a non-continuous function.

As a result, the definite integral of this equation cannot be calculated and can instead be entered as DNE.

To know more about integral refer here:

https://brainly.com/question/31059545#

#SPJ11

in their research study of measuring the correlation between two variables, students of ace college found a nearly perfect positive correlation between the variables. what coefficient of correlation did they arrive at?

Answers

The students of Ace College found a nearly perfect positive correlation between two variables in their research study. The nearly perfect positive correlation suggests that the two variables are closely related and move in sync with each other.

In their research study, the students of Ace College discovered a nearly perfect positive correlation between the two variables they were investigating. The coefficient of correlation they arrived at is known as the Pearson correlation coefficient, which measures the strength and direction of the linear relationship between two variables.

The Pearson correlation coefficient ranges from -1 to +1, where -1 represents a perfect negative correlation, +1 represents a perfect positive correlation, and 0 represents no correlation. Since the students found a nearly perfect positive correlation, the coefficient of correlation would be close to +1.

This indicates a strong and direct relationship between the variables, meaning that as one variable increases, the other variable also tends to increase consistently. The nearly perfect positive correlation suggests that the two variables are closely related and move in sync with each other.

Learn more about Pearson correlation coefficient here:

https://brainly.com/question/4629253

#SPJ11

Find the limit. lim (x,y)→(In6,0) ex-y lim (x,y) →(In6,0) ex-Y = | h www (Simplify your answer. Type an integer or a simplified fraction.)

Answers

The limit of the given function  lim_(x,y)→(ln(6),0) e^(x-y)  is 6.

To find the limit, we need to evaluate the expression as (x, y) approaches (ln(6), 0).

The expression is given by

lim_(x,y)→(ln(6),0) e^(x-y)

Since the second limit involves the variable "Y" instead of "y," we can treat it as a separate variable. Let's rename it as Z for clarity.

Now the expression becomes:

lim_(x,y)→(ln(6),0) e^(x-y)

Note that the second limit does not depend on the variable "y" anymore, so we can treat it as a constant.

We can rewrite the expression as:

lim_(x,y)→(ln(6),0) e^(x-y)

Now, let's evaluate each limit separately:

lim_(x,y)→(ln(6),0) e^(x-y) = e^(ln(6)-0) = 6.

Finally, we multiply the two limits together:

lim_(x,y)→(ln(6),0) e^(x-y)  = 6

Therefore, the limit is 36.

To know more about Limits refer to this link-

https://brainly.com/question/12211820#

#SPJ11

Question 15 (1 point) X = 3 1000. The cost of A nursery determines the demand in May for potted plants is p growing x plants is C'(x) = 0.02x + 4000, 0 < x≤6000.. Determine the marginal profit funct

Answers

The marginal profit function can be determined by taking the derivative of the cost function with respect to x. In this case, the cost function is C'(x) = 0.02x + 4000. Taking the derivative of C'(x) will give us the marginal profit function.

To find the derivative, we differentiate each term separately. The derivative of 0.02x is simply 0.02, as the derivative of x with respect to x is 1. The derivative of the constant term 4000 is 0, as the derivative of a constant is always 0.

Therefore, the marginal profit function is P'(x) = 0.02.

The marginal profit function is constant at 0.02, meaning that for each additional plant produced, the marginal profit will increase by 0.02 units. This provides insight into the incremental profitability of producing additional potted plants within the given demand range.

Learn more about marginal profit function here:

https://brainly.com/question/28856941

#SPJ11

A drone operator flies a drone in a circular path around an object that is 230 meters south and 190 meters west of her position. The drone's path takes it over a point that is 240 meters east and 170 meters south of
her. Find an equation for the drone's path. (Assume the operator is located at the origin, with the horizontal
axis running east-west and the vertical axis running north-south)

Answers

To find an equation for the drone's path, we can use the coordinates of the points it passes through to determine the equation of the circle. The equation of the drone's path is : (x - 25)^2 + (y + 200)^2 = 40625

Let's denote the drone's position as (x, y), with the origin (0, 0) representing the operator's location. The given information allows us to identify three points on the drone's path: Point A: (240, -170) - Located 240 meters east and 170 meters south of the operator. Point B: (-190, -230) - Located 190 meters west and 230 meters south of the operator. Point C: (0, 0) - The operator's location.

The equation for a circle can be written in the form (x - h)^2 + (y - k)^2 = r^2, where (h, k) represents the center of the circle, and r is the radius. To determine the center of the circle, we can find the coordinates of the midpoint between points A and B: Midpoint coordinates: ((240 - 190) / 2, (-170 - 230) / 2) = (25, -200). The center of the circle is (25, -200).

Next, we need to find the radius of the circle. The radius is the distance between the center of the circle and any point on the circle. We can use the distance formula to calculate the radius using point C as the reference point: Radius = sqrt((0 - 25)^2 + (0 - (-200))^2) = sqrt(25^2 + 200^2) = sqrt(625 + 40000) = sqrt(40625) = 201.56. The equation of the drone's path is thus: (x - 25)^2 + (y + 200)^2 = (201.56)^2. Simplifying further: (x - 25)^2 + (y + 200)^2 = 40625

To learn more about Midpoint, click here: brainly.com/question/30197001

#SPJ11

Given the triangle 29 A х find the length of > 33° 20° side x using the Law of Sines. Round your final answer to 4 decimal places. X =

Answers

The length of side x is approximately 11.6622.

To find the length of side x in the triangle, we can use the Law of Sines, which states that the ratio of the length of a side of a triangle to the sine of its opposite angle is constant. In this case, we have the following information:

Side opposite angle 33°: 29

Side opposite angle 20°: x

Using the Law of Sines, we can set up the following proportion:

x / sin(20°) = 29 / sin(33°)

To find the length of x, we can rearrange the equation:

x = (29 * sin(20°)) / sin(33°)

Let's calculate the value of x using this formula:

x = (29 * sin(20°)) / sin(33°)

x ≈ 11.6622

Rounding the answer to 4 decimal places, the length of side x is approximately 11.6622.

To learn more about triangle

https://brainly.com/question/31092331

#SPJ11

What is the volume of a right circular cylinder with a diameter of 8 meters and a height of 12 meters. Leave the answer in terms of ( pie sign )

Answers

The volume of a right circular cylinder with a diameter of 8 meters and a height of 12 meters is: B. 192π m³.

How to calculate the volume of a right circular cylinder?

In Mathematics and Geometry, the volume of a right circular cylinder can be calculated by using this formula:

Volume of a right circular cylinder, V = πr²h

Where:

V represents the volume of a right circular cylinder.h represents the height of a right circular cylinder.r represents the radius of a right circular cylinder.

Since the diameter is 8 meters, the radius can be determined as follows;

Radius = diameter/2 = 8/2 = 4 meters.

By substituting the given parameters into the volume of a right circular cylinder formula, we have the following;

Volume of cylinder, V = π × 4² × 12

Volume of cylinder, V = π × 16 × 12

Volume of cylinder, V = 192π m³.

Read more on cylinder here: https://brainly.com/question/27933016

#SPJ1

The volume of a right circular cylinder with a diameter of 8 meters and a height of 12 meters is 192[tex]\pi[/tex]

Given that ;

Diameter = 8 m

Height = 12 m

We know that radius = diameter / 2

Radius (r) = 8 / 2

r = 4 m

Formula for calculating volume of right circular cylinder = [tex]\pi[/tex]r²h

Now, putting the given values in formula;

volume = [tex]\pi[/tex] × 4 × 4 × 12

volume = 192 [tex]\pi[/tex] m ³

Thus, the volume of a right circular cylinder with a diameter of 8 meters and a height of 12 meters is 192[tex]\pi[/tex]

To know more about volume of cylinder :

https://brainly.com/question/9624219

Find the value of the abscissa for the midpoint of A(-10,19) and B(8,-10)

Answers

To find the abscissa of the midpoint of two points, we can use the midpoint formula. The midpoint formula states that the x-c coordinate of the midpoint is the average of the x-coordinates of the two points.

For the points A(-10, 19) and B(8, -10), the x-coordinate of the midpoint is calculated as follows: x-coordinate of midpoint = (x-coordinate of A + x-coordinate of B) / 2.  Substituting the values, we have: x-coordinate of midpoint = (-10 + 8) / 2

x-coordinate of midpoint = -2 / 2

x-coordinate of midpoint = -1

Therefore, the abscissa for the midpoint of A(-10, 19) and B(8, -10) is -1. This means that the midpoint lies on the vertical line with x-coordinate -1.

To Learn more about midpoint formula click here : brainly.com/question/17685913

#SPJ11

Write the infinite series using sigma notation. 6 6 6+ + 6 + 6 + + ... = -Σ - 4 n = The form of your answer will depend on your choice of the lower limit of summation. Enter infinity for 0.

Answers

The infinite series Σ(6/n) from n = 1 to ∞ is the sum of an infinite number of terms obtained by dividing 6 by positive integers. The series diverges to positive infinity, meaning the sum increases without bound as more terms are added.

The infinite series can be expressed using sigma notation as follows:

Σ(6/n) from n = 1 to ∞.

In this series, the term 6/n represents the nth term of the series. The index variable n starts from 1 and goes to infinity, indicating that we sum an infinite number of terms.

By plugging in different values of n into the term 6/n, we can see that the series expands as follows:

6/1 + 6/2 + 6/3 + 6/4 + 6/5 + ...

Each term in the series is obtained by taking 6 and dividing it by the corresponding positive integer n. As n increases, the terms in the series become smaller and approach zero.

However, since we are summing an infinite number of terms, the series does not converge to a finite value. Instead, it diverges to positive infinity.

In conclusion, the infinite series Σ(6/n) from n = 1 to infinity represents the sum of an infinite number of terms, where each term is obtained by dividing 6 by the corresponding positive integer. The series diverges to positive infinity, meaning that the sum of the series increases without bound as more terms are added.

To know more about infinite series refer here:

https://brainly.com/question/11764756#

#SPJ11

Complete Question:

Write the infinite series using sigma notation.

6 + 6/2 + 6/3 + 6/4 + 6/5 + ......= Σ

The form of your answer will depend on your choice of the lower limit of summation. Enter infinity for 0.








Consider the following. у 6 y= x - 2x 41 N -4 х -2 N N y = 2x -4 - 6 (a) Find the points of intersection of the curves. (xy (smallest x-value) (x, y) = (1 (x, y) = ( =( Y) (x, y) = (largest y-value)

Answers

The curves given by the equations intersect at two points, namely (1, -2) and (5, -4). The point with the smallest x-value of intersection is (1, -2), while the point with the largest y-value of intersection is (5, -4).

To find the points of intersection, we need to set the two equations equal to each other and solve for x and y. The given equations are y = x - 2x^2 + 41 and y = 2x - 4. Setting these equations equal to each other, we have x - 2x^2 + 41 = 2x - 4.

Simplifying this equation, we get 2x^2 - 3x + 45 = 0. Solving this quadratic equation, we find two values of x, which are x = 1 and x = 5. Substituting these values back into either equation, we can find the corresponding y-values.

For x = 1, y = 1 - 2(1)^2 + 41 = -2, giving us the point (1, -2). For x = 5, y = 2(5) - 4 = 6, giving us the point (5, 6). Therefore, the points of intersection of the curves are (1, -2) and (5, 6). Among these points, (1, -2) has the smallest x-value, while (5, 6) has the largest y-value.

Learn more about equation here:

https://brainly.com/question/29657983

#SPJ11

someone pls complete this. I will give brainliest

Answers

The values of the variables are:

1.

a = 14.69

b = 20.22

2.

p = 11.28

q = 4.08

3.

x = 18.25

y = 17

4.

a = 9

b = 16.67

We have,

1.

Sin 36 = a / 25

0.59 = a/25

a = 0.59 x 25

a = 14.69

Cos 36 = b / 25

0.81 = b / 25

b = 0.81 x 25

b = 20.22

2.

Sin 20 = q / 12

0.34 = q / 12

q = 0.34 x 12

q = 4.08

Cos 20 = p / 12

0.94 = p / 12

p = 0.94 x 12

p = 11.28

3.

Sin 43 = y/25

0.68 = y / 25

y = 0.68 x 25

y = 17

Cos 43 = x/25

0.73 = x / 25

x = 0.73 x 25

x = 18.25

4.

Sin 57 = 14 / b

0.84 = 14 / b

b = 14 / 0.84

b = 16.67

Cos 57 = a / b

0.54 = a / 16.67

a = 0.54 x 16.67

a = 9

Thus,

The values of the variables are:

1.

a = 14.69

b = 20.22

2.

p = 11.28

q = 4.08

3.

x = 18.25

y = 17

4.

a = 9

b = 16.67

Learn more about trigonometric identities here:

https://brainly.com/question/14746686

#SPJ1

Find the area of the surface generated by revolving the curve about each given axis. x = 5t, y = 5t, 0 st≤ 5 (a) x-axis 673.1π X (b) y-axis 1346.3 x The rectangular coordinates of a point are given. Plot the point. (-7√2,-7√2) 15 10 10 15 -15 -10 -5 O -15 -5 O SE -56 -10 -155 y 15 10 5 5 X -15 -10 -5 -10 10 15 -15 -10 -15 Find two sets of polar coordinates for the point for 0 ≤ 0 < 2. (r, 8) = (smaller r-value) (r, 8) = (larger r-value) -10 -5 15 10 -5 -10 -15 15 10 5 -5 -10 -15 10 15 5 10 15 X X

Answers

The area of the surface generated by revolving the curve x = 5t, y = 5t, 0 ≤ t ≤ 5 about the x-axis is 673.1π square units. When revolving the same curve about the y-axis, the surface area is 1346.3π square units. The point (-7√2, -7√2) is plotted on the coordinate plane. For this point, two sets of polar coordinates are (10√2, -45°) and (10√2, 315°).

To find the surface area generated by revolving the curve x = 5t, y = 5t, 0 ≤ t ≤ 5 about the x-axis, we can use the formula for the surface area of revolution: A = ∫2πy√(1 + (dy/dx)²) dx.

In this case, dy/dx = 1, so the integral simplifies to ∫2πy dx.

Substituting the given curve equations, we have ∫2π(5t) dx = 10π∫t dx = 10π∫dt = 10π[t] from 0 to 5 = 50π.

Evaluating this gives 50π ≈ 157.1 square units.

Multiplying by 4 to account for all quadrants, we get the final surface area of 200π ≈ 673.1π square units when revolving about the x-axis.

When revolving the same curve about the y-axis, the formula for surface area becomes A = ∫2πx√(1 + (dx/dy)²) dy. Here, dx/dy = 1, so the integral simplifies to ∫2πx dy.

Substituting the curve equations, we have ∫2π(5t) dy = 10π∫t dy = 10π∫dt = 10π[t] from 0 to 5 = 50π.

Evaluating this gives 50π ≈ 157.1 square units.

Multiplying by 4, we get the final surface area of 200π ≈ 673.1π square units when revolving about the y-axis.

The point (-7√2, -7√2) is plotted on the coordinate plane. The x-coordinate represents the radial distance (r) and the y-coordinate represents the angle (θ) in polar coordinates.

Using the distance formula, we find r = √((-7√2)² + (-7√2)²) = 10√2. The angle θ can be determined using the inverse tangent function: θ = atan(-7√2 / -7√2) = atan(1) = -45°.

Since this point lies in the fourth quadrant, the angle can also be expressed as 315°. Thus, the two sets of polar coordinates for the point (-7√2, -7√2) are (10√2, -45°) and (10√2, 315°).

Learn more about area of a surface generated by revolving a curve:

https://brainly.com/question/30786118

#SPJ11

3 4- If S (t)=(t²-1) ³ c. Find all the points that minimizes or maximizes the function Find if there are any inflection points in the function d.

Answers

The function [tex]S(t) = (t^2 - 1)^3[/tex] can have points that minimize or maximize the function. To find them, we need to determine the critical points by finding where the derivative equals zero or is undefined.

There are no inflection points in the function since it is a polynomial of degree 6.

To find the points that minimize or maximize the function [tex]S(t) = (t^2 - 1)^3[/tex], we need to examine the critical points. The critical points occur where the derivative equals zero or is undefined.

Taking the derivative of S(t) with respect to t, we get:

[tex]S'(t) = 3(t^2 - 1)^2 * 2t = 6t(t^2 - 1)^2[/tex]

To find the critical points, we set S'(t) = 0 and solve for t:

[tex]6t(t^2 - 1)^2 = 0[/tex]

This equation gives us two possibilities: t = 0 or [tex]t^2 - 1 = 0[/tex]. For t = 0, we have a critical point. For t^2 - 1 = 0, we get t = -1 and t = 1 as additional critical points.

To determine if these critical points correspond to local minima, local maxima, or neither, we can use the first or second derivative test. However, since the second derivative is not provided, we cannot definitively determine the nature of these critical points.

Regarding inflection points, an inflection point occurs where the concavity changes. Since the function [tex]S(t) = (t^2 - 1)^3[/tex] is a polynomial of degree 6, its concavity does not change, and therefore, there are no inflection points in the function.

To learn more about inflection points visit:

brainly.com/question/29183031

#SPJ11

The image has the question

Answers

All the values of solution are,

⇒ m ∠A = 90 degree

⇒ ∠C = 62 Degree

⇒ BC = 6.2

⇒ m AC = 56°

⇒ m AB = 124 degree

We have to given that,

A triangle inscribe the circle.

Hence, We can find all the values as,

Measure of angle A is,

⇒ m ∠A = 90 degree

And, We know that,

Sum of all the interior angle of a triangle are 180 degree.

Hence, We get;

⇒ ∠A + ∠B + ∠C = 180

⇒ 90 + 28 + ∠C = 180

⇒ 118 + ∠C = 180

⇒ ∠C = 180 - 118

⇒ ∠C = 62 Degree

By Pythagoras theorem,

⇒ AB² = AC² + BC²

⇒ 7.3² = 3.9² + BC²

⇒ 53.29 = 15.21 + BC²

⇒ BC² = 53.29 - 15.21

⇒ BC² = 38.08

⇒ BC = 6.2

⇒ m AC = 2 × ∠ABC

⇒ m AC = 2 × 28

⇒ m AC = 56°

⇒ m AB = 180 - m AC

⇒ m AB = 180 - 56

⇒ m AB = 124 degree

Learn more about the angle visit:;

https://brainly.com/question/25716982

#SPJ1

Question 9 Evaluate f(x) = log x at the indicated value of x. Round your result to three decimal places. x=25.5 O-1.407 1.407 O 0.711 O 0.039 0 -0.711 MacBook Pro Bo 888 % $ 4 & 7 5 6

Answers

The value of the function f(x) = log(x) at x = 25.5 is approximately 3.232.

To evaluate the function f(x) = log(x) at x = 25.5, we substitute the given value into the logarithmic expression:

f(25.5) = log(25.5)

Using a calculator, we can find the numerical value of the logarithm:

f(25.5) ≈ 3.232

Rounding the result to three decimal places, we have:

f(25.5) ≈ 3.232

Therefore, the value of the function f(x) = log(x) at x = 25.5 is approximately 3.232.

It's important to note that the logarithm function returns the exponent to which the base (usually 10 or e) must be raised to obtain a given number. In this case, the logarithm of 25.5 represents the exponent to which the base must be raised to obtain 25.5. The numerical approximation of 3.232 indicates that 10 raised to the power of 3.232 is approximately equal to 25.5.

The answer options provided in the question do not include the accurate result, which is approximately 3.232.

for more such question on function visit

https://brainly.com/question/11624077

#SPJ8

The Department of Energy and Environment USA 2012 Fuel Economy Guide provides fuel efficiency data for 2012 model year cars and trucks. The column labeled Manufacturer shows the name of the company that manufactured the car; the column labeled Displacement shows the engine’s displacement in liters; the column labeled Fuel shows the required or recommended type of fuel (regular or premium gasoline); the column labeled Drive identifies the type of drive (F for front wheel, R for rear wheel, and A for all wheel); and the column labeled Hwy MPG shows the fuel efficiency rating for highway driving in terms of miles per gallon.
a. Develop an estimated regression equation that can be used to predict the fuel efficiency for highway driving given the engine’s displacement. Test for significance using α = 0.05.
b. Consider the addition of the dummy variable FuelPremium, where the value of FuelPremium is 1 if the required or recommended type of fuel is premium gasoline and 0 if the type of fuel is regular gasoline. Develop the estimated regression equation that can be used to predict the fuel efficiency for highway driving given the engines displacement and the dummy variable FuelPremium.

Answers

To predict the fuel efficiency for highway driving based on the engine's displacement, a simple linear regression model can be developed. The estimated regression equation will help establish the relationship between these variables. Additionally, by incorporating a dummy variable called FuelPremium, the regression equation can be expanded to include the effect of fuel type (regular or premium gasoline) on highway fuel efficiency.

a. To develop the estimated regression equation, you would use the data from the Department of Energy and Environment's 2012 Fuel Economy Guide. The dependent variable is the Hwy MPG (fuel efficiency for highway driving), and the independent variable is the Displacement (engine's displacement in liters). By fitting a simple linear regression model, you can estimate the regression equation, which will provide the relationship between these variables.

To test for significance, you would calculate the p-value associated with the estimated regression coefficient and compare it to the significance level (α) of 0.05. If the p-value is less than 0.05, the regression coefficient is considered significant, indicating a significant relationship between the engine's displacement and highway fuel efficiency.

b. To incorporate the dummy variable FuelPremium, you would first create the dummy variable based on the Fuel column in the dataset. Assign the value 1 if the required or recommended type of fuel is premium gasoline and 0 if it is regular gasoline.

Then, you can expand the regression equation by including this dummy variable as an additional independent variable along with the engine's displacement. The estimated regression equation will now predict the fuel efficiency for highway driving based on both the engine's displacement and the type of fuel (regular or premium gasoline). This expanded model allows you to examine the impact of fuel type on highway fuel efficiency while controlling for the engine's displacement.

Learn more about significance level (α)  here:

https://brainly.com/question/14397747

#SPJ11

Other Questions
Where is OH on the IR spectrum? If using the following formula to compute an approximation of f'(x): 1 fi(2) ~ [-f(x+2h) +8f(x+h)-8f(x-h) 12 h 2.2.1 find the order of convergence as h0. + f(x-2h)], 151" additional software that takes up storage space is often called Find all horizontal and vertical asymptotes. 3x? - 13x+4 f(x) = 2 x - 3x - 4 Select the correct choice below and, if necessary, fill in the answer box to complete your choice O A. The horizontal asymp If F: RS R' is a vector field whose component functions have continuous partial derivatives, and curl(F) = 0, then F is a conservative vector field: (Recall that 0 = (0,0.0))_ Please solve this with work.1-16 Evaluate the line integral, where C is the given curve. 1. Scy'ds, C: x= 1, y = 1, 0+1+2 How does crowdsourcing enable managers to expand their talent pool? o Amateurs work together in an online environment to solve a problem. o It is routinely used during the hiring process. o Experts in the field provide their insight into the problem at hand. o They hire experts in several fields to help run the company. an infant with congestive heart failure is receiving digoxin (lanoxin). what does the nurse recognize as a sign of digoxin toxicity? Find the first 5 terms of the Maclaurin series for the function(x) = 2^x Find the absolute extrema of the function on the closed interval. g(x) = 5x10x, [0, 3] minimum (x, y) = maximum (x, y) =Find dy/dx by implicit differentiation. x = 6 In(y - 3), (0, 2) dy dx Find Find the maximum and minimum values of f(x,y)=7x+y on the ellipse x^2+9y^2=1maximum value:minimum value: Danny owns an electronics outlet in Dallas. In 2021, he paid $665 to register for a four-day course in management in Chicago. Danny paid $735 in airfare. After the course, Danny spent the last day sightseeing. During the trip, Danny paid $148 per night for five nights' lodging, $270 per day for meals in restaurants, and $210 per day for a rental car. What amount of these travel expenditures may Danny deduct as business expenses? with the growth of consultation, a of opinion has developed with regards to the definition of consultation. At a blood drive, 6 donors with type O+blood , 3 donors with typeA+blood , and 3 donors with type B + blood are in line. In how many distinguishable ways can donors be in line? Given the differential equation y"-8y'+16y=0 Find the generalsolution to the given equation. Then find the unique solution tothe initial condition y(0)=2y and y(0)=7 evaluate the limit using the appropriate properties of limits. lim x [infinity] 9x2 x 6 6x2 5x 8 please ignore the top problem/questionEvaluate the limit using L'Hospital's rule e* - 1 lim x 0 sin(11x)A ball is thrown into the air and its position is given by h(t) - 2.6t + 96t + 14, where h is the height of the ball in meters Verify the Divergence Theorem for the vector field and region F = (3x, 6z, 4y) and the region x2 + y2 es Exercise 3-3 (Algo) Schedules of Cost of Goods Manufactured and Cost of Goods Sold [LO3-3] Primare Corporation has provided the following data concerning last month's manufacturing operations. Purchases of raw materials Indirect materials used in production Direct labor $ 31,000 $4,640 $ 59,400 $ 88, 100 Manufacturing overhead applied to work in process Underapplied overhead: $ 4,100 Inventories Raw materials Beginning. $ 11,800 Ending $ 18,500 Work in process $ 55,500 $ 66,300 Finished goods $ 33,400 $ 43,300 Required: 1. Prepare a schedule of cost of goods manufactured for the month. 2. Prepare a schedule of cost of goods sold for the month. Assume the underapplied or overapplied overhead is closed to Cost of Goods Sold. Complete this question by entering your answers in the tabs below. Required 1 Required 2 Prepare a schedule of cost of goods manufactured for the month. Primare Corporation: Schedule of Cost of Goods Manufactured i Required 1 Required 2 Prepare a schedule of cost of goods manufactured for the month. Primare Corporation Schedule of Cost of Goods Manufactured Direct materials: Total raw materials available Raw materials used in production Direct materials used in production Total manufacturing costs added to production Total manufacturing costs to account for Cost of goods manufactured Required a O $ Required 2 > 0 0 Required 1 Required 2 Prepare a schedule of cost of goods sold for the month. Assume the underapplied or overapplied overhead is closed to Cost of Goods Sold. Primare Corporation Schedule of Cost of Goods Sold Required 2 > < Required 1 historians speak of the rise of mass politics in the period from 1880 to 1914. define this phenomenon and analyze its effects on european politics in this period. 2005