Condisder the following compounds: H2S, H2Se, H2 Te. The molecule with the highest boiling point is, while the molecule with the highest vapor pressure is H2Te; H2 Te H2S; H2Te H2S; H2S H2Te; H2S H2S; H2Se

Answers

Answer 1

The molecule with the highest boiling point among [tex]H_2S[/tex] (hydrogen sulfide), [tex]H_2Se[/tex] (hydrogen selenide), and[tex]\pi H_2Te[/tex](hydrogen telluride) is H2Te. The molecule with the highest vapor pressure is [tex]H_2S[/tex].

Boiling points are influenced by intermolecular forces, and hydrogen telluride has stronger intermolecular forces compared to hydrogen sulfide and hydrogen selenide due to its larger and more polarizable tellurium atom. These stronger intermolecular forces result in higher boiling points for [tex]H_2Te[/tex]. On the other hand, the molecule with the highest vapor pressure is [tex]H_2S[/tex]. Vapor pressure is determined by the ease with which molecules escape from the liquid phase and enter the gas phase. Hydrogen sulfide has a lower boiling point and weaker intermolecular forces compared to [tex]H_2Se[/tex] and [tex]H_2Te[/tex]. Consequently, [tex]H_2S[/tex] molecules are more likely to escape into the gas phase, leading to higher vapor pressure compared to[tex]H_2Se[/tex] and[tex]H_2Te[/tex]. To summarize, [tex]H_2Te[/tex]has the highest boiling point, while [tex]H_2S[/tex]has the highest vapor pressure among the given compounds.

Learn more about Boiling points here:

https://brainly.com/question/28203474

#SPJ11


Related Questions

if a solute dissolves in water to form a solution that does not conduct an electric current, the solute is a(n)

Answers

If a solute dissolves in water to form a solution that does not conduct an electric current, the solute is a non-electrolyte.

Non-electrolytes are compounds that do not ionize in solution, meaning they do not separate into charged particles that can carry an electric current. Examples of non-electrolytes include sugar, urea, and ethanol. In contrast, electrolytes are compounds that dissociate into ions when dissolved in water, making them capable of conducting electricity. Examples of electrolytes include sodium chloride, potassium hydroxide, and sulfuric acid. The ability to conduct electricity is a fundamental property that distinguishes between electrolytes and non-electrolytes. This occurs because non-electrolytes do not dissociate into ions when dissolved in water. Instead, they remain as intact molecules, and these molecules are unable to carry an electric charge. Common examples of non-electrolytes include sugar, ethanol, and urea. In contrast, electrolytes, like salts and acids, do dissociate into ions in solution and can conduct electricity.

To know more about current visit:

https://brainly.com/question/15141911

#SPJ11

To control her blood pressure, Jill's grandmother takes one half of a pill every other day. Which of the following represents about a one year supply? O 360 pills 180 pills 60 pills O 30 pills O 90 pills

Answers

180 pills would represent about a one-year supply for Jill's grandmother.

To determine the one-year supply of pills, we need to calculate the total number of pills Jill's grandmother would take in a year.

Jill's grandmother takes one half of a pill every other day. In one year, there are 365 days. Since she takes one pill every other day, she would take a total of 365/2 = 182.5 pills in a year.

Since we cannot have half a pill, we need to round the number to the nearest whole number. In this case, Jill's grandmother would need approximately 183 pills for a one-year supply.

Among the given options, the closest number to 183 is 180 pills. Therefore, 180 pills would represent about a one-year supply for Jill's grandmother.

Learn more about pills here:

https://brainly.com/question/32176802

#SPJ11

the equilibrium constant for a base ionization reaction is called the: select the correct answer below: a. base equilibrium constant
b. base ionization constant c. basicity index d. none of the above

Answers

The equilibrium constant for a base ionization reaction is called the base ionization constant. This corresponds to option b.

The base ionization constant, also known as the acid dissociation constant (Ka) for bases, is a quantitative measure of the extent to which a base dissociates or ionizes in water.

It represents the ratio of the concentrations of the products to the concentrations of the reactants at equilibrium for the ionization reaction of a base.

The base ionization constant is denoted as Kb, and it is specific to the particular base being considered. It helps determine the strength of a base and provides valuable information about its behavior in aqueous solutions. By comparing the values of Kb for different bases, their relative strengths and reactivity can be assessed.

Options a, c, and d are incorrect because they do not accurately represent the term commonly used for the equilibrium constant of a base ionization reaction. Therefore, the correct option is B.

To know more about base ionization, refer here:

https://brainly.com/question/31359427#

#SPJ11

Predict whether each of the following molecules is polar or nonpolar: (a) IF, (b) CS2, (c) SO3, (d) PCl3, (e) SF6, (f) IF5.

Answers

The polarity status of the molecules are as follows;

IF - nonpolar CS₂ - nonpolar SO₃ - nonpolarPCl₃ - polar SF₆ - nonpolar IF₅ - polar

What is polarity?

Polarity is the dipole-dipole intermolecular forces between the slightly positively-charged end of one molecule to the negative end of another or the same molecule.

A polar molecule has difference in electronegativity values. For example; all the three chlorine atoms pull the electrons from the phosphorous atom making it a polar molecule in PCl₃.

Also, iodine pentafluoride (IF₅) is a polar molecule because the central iodine (I) atom in IF₅ is surrounded by five fluorine (F) atoms forming a square pyramidal shape.

Learn more about polarity at: https://brainly.com/question/1946554

#SPJ1

Why are HFCs inappropriate for long-term replacement of CFCs? a. They are flammable b. They are very toxic c. They absorb infrared radiation

Answers

HFCs (Hydrofluorocarbons) are inappropriate for long-term replacement of CFCs (Chlorofluorocarbons) due to their ability to absorb infrared radiation.

HFCs are not flammable and they are not very toxic, which makes them initially attractive as alternatives to CFCs. However, their significant drawback lies in their ability to absorb infrared radiation, which contributes to global warming. HFCs have a high global warming potential (GWP) compared to CFCs. When released into the atmosphere, HFCs can trap heat and contribute to the greenhouse effect, leading to climate change. This characteristic makes them unsuitable for long-term use as replacements for CFCs.

CFCs, although detrimental to the ozone layer, have a low GWP and do not significantly contribute to global warming. The goal of finding alternatives to CFCs is to mitigate both ozone depletion and climate change. As a result, the focus has shifted towards finding alternative substances that have low ozone depletion potential (ODP) as well as low GWP. Substances like hydrofluoroolefins (HFOs) are being explored as potential replacements for CFCs, as they have low ODP and low GWP, making them more suitable for long-term use.

To learn more about Hydrofluorocarbons refer:

https://brainly.com/question/14528690

#SPJ11

dilution is a process where solvent is added to a solution in order to change the concentration while keeping the amount of solute constant. which equation below describes this scenario?
c1v1=c2v2
c2v1=c1v2
c1c2=v1v2
none of the above

Answers

The equation that describes the process of dilution, where solvent is added to a solution to change the concentration while keeping the amount of solute constant, is "C1V1 = C2V2."

The equation C1V1 = C2V2 is known as the dilution equation. In this equation, C1 represents the initial concentration of the solution, V1 represents the initial volume of the solution, C2 represents the final concentration after dilution, and V2 represents the final volume of the solution.

The equation shows the relationship between the initial and final concentrations and volumes of the solution. By keeping the product of the initial concentration and volume equal to the product of the final concentration and volume, the amount of solute remains constant during the dilution process.

This equation is commonly used in laboratory settings or when preparing solutions with specific concentrations. It allows for precise control of the concentration of a solution by adjusting the volumes of solvent and solute.

Learn more about concentrations here:

https://brainly.com/question/3045247

#SPJ11

when a 2.0 gram strip of zn metal is placed in a solution of 1 g agno3, what is the limiting reagent?

Answers

When a 2.0 gram strip of Zn metal is placed in a solution of 1 g [tex]AgNO_3[/tex][tex]AgNO_3[/tex] is the limiting reagent,

To determine the limiting reagent, we need to compare the number of moles of each reactant to the stoichiometric ratio in the balanced chemical equation.  The balanced chemical equation for the reaction between zinc (Zn) and silver nitrate is:

[tex]\[ Zn + 2AgNO_3 \rightarrow Zn(NO_3)_2 + 2Ag \][/tex]

First, we calculate the number of moles of each reactant:

For zinc (Zn):

Molar mass of Zn = 65.38 g/mol

Number of moles of Zn = mass / molar mass = 2.0 g / 65.38 g/mol ≈ 0.0305 mol

For silver nitrate :

Molar mass of  [tex]AgNO_3[/tex] = 169.87 g/mol

Number of moles of  [tex]AgNO_3[/tex] = mass / molar mass = 1.0 g / 169.87 g/mol ≈ 0.0059 mol

Comparing the moles of Zn and [tex]AgNO_3[/tex], we can see that the moles of [tex]AgNO_3[/tex] (0.0059 mol) are less than the moles of Zn (0.0305 mol). Therefore, silver nitrate  is the limiting reagent in this reaction. It means that all the [tex]AgNO_3[/tex] will be consumed, and some Zn will be left unreacted.

In the reaction, 2 moles of [tex]AgNO_3[/tex] react with 1 mole of Zn. Since[tex]AgNO_3[/tex]is the limiting reagent, only 2 × 0.0059 mol ≈ 0.0118 mol of Ag will be produced.

Learn more about limiting reagent here:

https://brainly.com/question/26905271

#SPJ11

What is the hybridization of the central atom in the sulfur pentafluoryl SF5+ cation?

Answers

The central sulfur atom in the SF5+ cation is sp3d hybridized.

The central atom in the sulfur pentafluoride cation (SF5+) is sulfur (S). To determine its hybridization, we need to count the number of regions of electron density around the central atom. This includes both bonded atoms and lone pairs.

In SF5+, sulfur has 5 fluorine atoms bonded to it, resulting in 5 regions of electron density. Additionally, sulfur does not have any lone pairs. Therefore, the total number of regions of electron density is 5.

To accommodate 5 regions of electron density, the sulfur atom undergoes sp3d hybridization. This means that one s orbital, three p orbitals, and one d orbital hybridize to form five sp3d hybrid orbitals. These hybrid orbitals are then used to form sigma bonds with the fluorine atoms.

Know more about sulfur atom here:

https://brainly.com/question/23576322

#SPJ11

for each of the pairs given, predict which acid is stronger i) h2s and h2se ii) hbro2 and hbro3 iii) h2seo3 and hbro3

Answers

HBrO3 makes it the stronger acid.

For each of the pairs given, the stronger acid is as follows:
i) Between H2S and H2Se, H2Se is the stronger acid. This is because Se is larger and less electronegative than S, allowing for easier ionization of the hydrogen atom.
ii) Between HBrO2 and HBrO3, HBrO3 is the stronger acid. The additional oxygen atom in HBrO3 increases its acidity due to the increased electron withdrawing effect, which stabilizes the conjugate base.
iii) Between H2SeO3 and HBrO3, HBrO3 is the stronger acid. This is because Br is more electronegative than Se, and the higher oxidation state of Br in HBrO3 leads to a stronger electron withdrawing effect, enhancing acidity.To predict which acid is stronger in each pair given, we can compare the electronegativity of the central atom in each acid. The more electronegative the central atom, the stronger the acid.
i) H2S and H2Se: Se is more electronegative than S, so H2Se is the stronger acid.
ii) HBrO2 and HBrO3: Br is in the same oxidation state in both acids, but HBrO3 has one more oxygen atom which increases its electronegativity, making it the stronger acid.
iii) H2SeO3 and HBrO3: Se is again more electronegative than Br, but the effect of the additional oxygen atom in .

To know more about HBrO3 visit:

https://brainly.com/question/31147533
#SPJ11

Consider a bond between carbon and generic element Z (C—Z). Changing atom Z from bromine to chlorine would result in what change to the wavenumber of absorption of the C—Z bond?
The wavenumber would increase.
The wavenumber would not change.
It is not possible to determine.
The wavenumber would decrease.

Answers

Changing the atom Z from bromine to chlorine in the C-Z bond would result in an increase in the wavenumber of absorption.

The wavenumber of absorption in a bond refers to the frequency of electromagnetic radiation absorbed by the bond. It is directly related to the strength and characteristics of the bond. When comparing bromine (Br) and chlorine (Cl), chlorine has a higher electronegativity than bromine. Electronegativity is a measure of an atom's ability to attract electrons towards itself in a chemical bond.

In a C-Z bond, the change from bromine to chlorine introduces a more electronegative atom. The increased electronegativity of chlorine compared to bromine results in a stronger bond between carbon and chlorine. A stronger bond requires more energy for absorption to occur, leading to a higher wavenumber of absorption.

Therefore, changing the atom Z from bromine to chlorine in the C-Z bond would result in an increase in the wavenumber of absorption.

Learn more about absorption here: https://brainly.com/question/30697449

#SPJ11

which element has the following ground state electron configuration? 1s22s22p63s23p5 select the correct answer below: cl f s ar

Answers

Answer:                  Cl

Explanation:

The element with the ground state electron configuration of 1s

[tex]1s^2 2s^2 2p^6 3s^2 3p^5[/tex] is chlorine (Cl).

The electron configuration [tex]1s^2 2s^2 2p^6 3s^2 3p^5[/tex] represents the arrangement of electrons in the atomic orbitals of an element. Breaking it down:

- 1s2 represents two electrons in the 1s orbital.

- 2s2 represents two electrons in the 2s orbital.

- 2p6 represents six electrons in the 2p orbital.

- 3s2 represents two electrons in the 3s orbital.

- 3p5 represents five electrons in the 3p orbital.

By identifying the element based on its electron configuration, we can determine that the element in question is chlorine (Cl). Chlorine has an atomic number of 17, indicating that it has 17 electrons. The given electron configuration matches that of chlorine, where the outermost electron is in the 3p orbital, specifically in the 3p5 subshell.

Learn more about electron configuration here:

https://brainly.com/question/29157546

#SPJ11

The balanced equation for the reaction between phosphoric acid and sodium hydroxide is: H3PO4 (aq) + 3 NaOH (aq) → Na3PO4 (aq) + 3 H2O(l) In a titration, what volume of 1.77 M phosphoric acid is required to neutralize 34.0 mL of 0.550 M sodium hydroxide?

Answers

To determine the volume of 1.77 M phosphoric acid needed to neutralize 34.0 mL of 0.550 M sodium hydroxide in a titration, we can use the balanced equation and the concept of stoichiometry.

The balanced equation for the reaction between phosphoric acid [tex](H_3PO_4[/tex]) and sodium hydroxide (NaOH) is:

[tex]\[ H_3PO_4 (aq) + 3 NaOH (aq) \rightarrow Na_3PO_4 (aq) + 3 H_2O(l) \][/tex]

From the equation, we can see that one mole of phosphoric acid reacts with three moles of sodium hydroxide.

To determine the volume of phosphoric acid required, we need to use the concept of stoichiometry.

First, we convert the given volume of sodium hydroxide (34.0 mL) to moles:

[tex]\[ \text{moles of NaOH} = \text{concentration} \times \text{volume} = 0.550 \, \text{M} \times 0.0340 \, \text{L} = 0.0187 \, \text{mol} \][/tex]

Since the stoichiometric ratio between phosphoric acid and sodium hydroxide is 1:3, we can determine the moles of phosphoric acid needed:

[tex]\[ \text{moles of H}_3\text{PO}_4 = 3 \times \text{moles of NaOH} = 3 \times 0.0187 \, \text{mol} = 0.0561 \, \text{mol} \][/tex]

Now, we can calculate the volume of 1.77 M phosphoric acid needed:

[tex]\[ \text{volume of H}_3\text{PO}_4 = \frac{\text{moles}}{\text{concentration}} = \frac{0.0561 \, \text{mol}}{1.77 \, \text{M}} \approx 0.032 \, \text{L} \][/tex]

Converting the volume to milliliters:

[tex]\[ \text{volume of H}_3\text{PO}_4 = 0.032 \, \text{L} \times 1000 = 32.0 \, \text{mL} \][/tex]

Therefore, approximately 32.0 mL of 1.77 M phosphoric acid is required to neutralize 34.0 mL of 0.550 M sodium hydroxide in the titration.

To learn more about stoichiometry refer:

https://brainly.com/question/14935523

#SPJ11

Draw the Lewis structure for AsF5 and then answer the questions that follow. . b What is the electron-pair geometry for As in AsF5? c What is the the shape (molecular geometry) of AsF5?

Answers

The electron-pair geometry for arsenic in [tex]AsF_5[/tex] is trigonal bipyramidal, and the molecular geometry or shape is also trigonal bipyramidal. The Lewis structure for[tex]AsF_5[/tex] can be represented as follows:

          F

          |

   F – As – F

          |

          F

In the Lewis structure of [tex]AsF_5[/tex], there is one central arsenic (As) atom bonded to five fluorine (F) atoms. Arsenic has five valence electrons, and each fluorine atom contributes one valence electron, totaling 40 electrons. To complete the octet for each atom, there is a need for an additional three electrons. The electron-pair geometry around the arsenic atom in [tex]AsF_5[/tex] is trigonal bipyramidal. It has five electron groups around it, consisting of the five fluorine atoms. The electron-pair geometry considers both bonding and non-bonding electron pairs.

The molecular geometry or shape of [tex]AsF_5[/tex] is also trigonal bipyramidal. In [tex]AsF_5[/tex] there are no lone pairs on the central arsenic atom, so all five fluorine atoms are bonded to arsenic. The five fluorine atoms are arranged in a trigonal bipyramidal shape, with three fluorine atoms in the equatorial plane and two fluorine atoms above and below the plane. In summary, the electron-pair geometry for arsenic in [tex]AsF_5[/tex] is trigonal bipyramidal, and the molecular geometry or shape is also trigonal bipyramidal.

Learn more about Lewis structure here:

https://brainly.com/question/4144781

#SPJ11

draw one of the aldoses that yields d-xylose on wohl degradation. draw your answer as a fischer projection.

Answers

The carbοn chain is depicted vertically, and the hydrοxyl grοups (OH) are pοsitiοned tο the right οf each carbοn.

What is Fischer prοjectiοn?

In chemistry, the Fischer prοjectiοn, devised by Emil Fischer in 1891, is a twο-dimensiοnal representatiοn οf a three-dimensiοnal οrganic mοlecule by prοjectiοn. Fischer prοjectiοns were οriginally prοpοsed fοr the depictiοn οf carbοhydrates and used by chemists, particularly in οrganic chemistry and biοchemistry.

Here's the Fischer prοjectiοn οf an aldοse that yields D-xylοse οn Wοhl degradatiοn:

    H

      |

   HΟ - C - H

      |

   HΟ - C - OH

      |

   HΟ - C - H

      |

   HΟ - C - H

      |

   HΟ - C - OH

      |

   HΟ- C - H

      |

   HΟ - C - OH

      |

   H - C - H

      |

   HΟ - C - H

      |

   HΟ - C - OH

      |

   HΟ - C - H

      |

   H - C - OH

      |

      C = Ο  

In the Fischer projection above, the vertical lines represent bonds that project into the plane of the paper (away from the viewer), while the horizontal lines represent bonds that project out of the plane of the paper (toward the viewer). The carbon chain is depicted vertically, and the hydroxyl groups (OH) are positioned to the right of each carbon.

Learn more about Fischer projection

https://brainly.com/question/30088701

#SPJ4

exactly 1 mole of na2so3 contains how many moles of na s and o

Answers

Exactly 1 mole of na2so3 contains

- 1 mole of Na2SO3 contains 2 moles of Na (Na2SO3 → 2Na+)

- 1 mole of Na2SO3 contains 1 mole of S (Na2SO3 → S2-)

- 1 mole of Na2SO3 contains 3 moles of O (Na2SO3 → 3O2-)

In Na2SO3, there are two sodium ions (Na+), one sulfur ion (S2-), and three oxygen ions (O2-). To determine the number of moles of Na, S, and O in 1 mole of Na2SO3, we look at the subscripts in the chemical formula.

For Na2SO3, the subscript 2 indicates that there are 2 moles of Na for every 1 mole of Na2SO3. Therefore, 1 mole of Na2SO3 contains 2 moles of Na.

Similarly, the subscript 1 for S indicates that there is 1 mole of S in 1 mole of Na2SO3.

The subscript 3 for O indicates that there are 3 moles of O for every 1 mole of Na2SO3. Therefore, 1 mole of Na2SO3 contains 3 moles of O.

Learn more about  number of moles here:

https://brainly.com/question/20370047

#SPJ11

Jayadev has apassion for photography. Maker the there films out of silver chloride which De composes when expos to light write the balanced equation.for the reaction

Answers

The decomposition reaction of silver chloride (AgCl) when exposed to light can be represented by the following balanced equation:

2AgCl (s) → 2Ag (s) + Cl2 (g)

In this equation, solid silver chloride decomposes into silver metal (Ag) and gaseous chlorine (Cl2) when exposed to light.

This reaction is an example of a photochemical reaction, where light energy triggers a chemical change. In this case, the absorption of light energy causes the silver chloride crystal lattice to break down, resulting in the formation of silver atoms and chlorine molecules.

It's worth noting that silver chloride is a photosensitive compound commonly used in traditional black and white photography. When light strikes the silver chloride-coated film, it creates a pattern of exposed and unexposed areas. The exposed areas undergo the decomposition reaction, resulting in the formation of metallic silver, which forms the photographic image.

For more such questions on silver chloride

https://brainly.com/question/19054138

#SPJ8

an oxidation reaction is defined as having a(n) in oxidation the correct answer below:increasedecreasesteady risefluctuation

Answers

An oxidation reaction is defined as having a(n) increase in oxidation state. This type of reaction involves the loss of electrons, leading to a rise in the oxidation state of an element involved in the reaction.

An oxidation reaction is defined as having an increase in oxidation. This means that during the reaction, there is a loss of electrons by the oxidized substance and a gain of electrons by the oxidizing agent. The term oxidation refers to the process of adding oxygen or removing hydrogen from a substance. This type of reaction can result in a steady rise in oxidation or it can fluctuate depending on the specific reaction conditions. The amount of oxidation can also be influenced by factors such as temperature, pressure, and the presence of catalysts. Overall, an increase in oxidation is the defining characteristic of an oxidation reaction.

To know more about oxidation visit:

https://brainly.com/question/13182308

#SPJ11

If the student had ground up the calcium carbonate chips into a powder and run the tests again, what would you expect to happen to the rate of reaction? Briefly explain why by applying collision theory

Answers

If the student had ground up the calcium carbonate chips into a powder and run the tests again, the rate of the reaction would increase, because the particles will collide more often.

Collision theory is a theory in chemistry that describes the rate of chemical reactions, the theory explains that the rate of a chemical reaction is directly proportional to the frequency of collisions between the reacting particles. In a chemical reaction, for the reaction to occur, the reactant particles must collide with sufficient energy and at the correct orientation. A reaction is unlikely to occur if the particles do not have the required energy or if they do not collide in the right orientation.

If the calcium carbonate chips are ground into a fine powder, the surface area of the chips is increased. An increase in surface area will increase the frequency of collisions between the reacting particles. When the frequency of collisions is increased, the rate of the reaction will also increase, this is because the particles will collide more often and therefore have a higher chance of colliding with sufficient energy and at the correct orientation to cause a reaction. Therefore, grinding the calcium carbonate chips into a powder will increase the rate of the reaction.

Learn more about collision theory at

https://brainly.com/question/4458330

#SPJ11

find the pOH for the following:
A 1.34 x 10^-4 M solution oh hydrochloride acid

Answers

The pOH of a 1.34 x 10^-4 M hydrochloric acid solution is approximately 3.87.

To find the pOH of a hydrochloric acid (HCl) solution with a concentration of 1.34 x 10^-4 M, we need to use the equation that relates pOH to the concentration of hydroxide ions (OH-) in the solution.

Since hydrochloric acid is a strong acid, it completely dissociates in water, resulting in the formation of H+ ions. The concentration of hydroxide ions (OH-) in the solution can be considered negligible compared to the concentration of H+ ions.

The pOH is defined as the negative logarithm (base 10) of the hydroxide ion concentration:

pOH = -log[OH-]

Since [OH-] is negligible, we can assume it to be approximately equal to zero, and taking the logarithm of zero is not possible. Therefore, in this case, we can assume that the solution is acidic and that [H+] is equal to the concentration of the hydrochloric acid.

So, the pOH can be calculated as:

pOH = -log[H+]

Now, we need to determine the value of [H+] using the concentration of hydrochloric acid given, which is 1.34 x 10^-4 M.

[H+] = 1.34 x 10^-4 M

Taking the negative logarithm:

pOH = -log(1.34 x 10^-4)

Using a calculator or logarithm table, we can find the logarithm of the concentration:

pOH ≈ -(-3.87)

pOH ≈ 3.87

Therefore, the pOH of a 1.34 x 10^-4 M hydrochloric acid solution is approximately 3.87.

For more such question on hydrochloric acid visit

https://brainly.com/question/3229358

#SPJ8

allows one to convert between moles of electrons and equivalent amount of charge in units of coloumbs

Answers

Faraday's constant (F) allows one to convert between moles of electrons and the equivalent amount of charge in units of coulombs. The Faraday's constant represents the charge of one mole of electrons and is approximately equal to 96,485 coulombs per mole (C/mol).

1 mole of electrons = F coulombs

So, if you have the number of moles of electrons involved in a reaction, you can multiply that by Faraday's constant to determine the corresponding amount of charge in coulombs. For example, if you have 2 moles of electrons, you can calculate the amount of charge in coulombs as Charge (in coulombs) = 2 moles of electrons × Faraday's constant

Charge (in coulombs) = 2 moles × 96,485 C/mol

Charge (in coulombs) = 192,970 C

Therefore, 2 moles of electrons is equivalent to 192,970 coulombs of charge.

Learn more about Faraday's constant here ;

https://brainly.com/question/32311767

#SPJ11

a ketohexose is reduced with nabh4 in ch3oh to form a mixture of d-galactitol and d-talitol. what is the structure of the ketohexose? draw your answer as a fischer projection.

Answers

The starting ketohexose must be a hexose that contains both galactose and talose as possible constituents. This indicates that the ketohexose is most likely D-tagatose, which has a ketone functional group and six carbon atoms. The Fischer projection of D-tagatose would show the arrangement of its six carbon atoms in a straight chain with the ketone group on the second carbon atom.

To determine the structure of the ketohexose that yields a mixture of d-galactitol and d-talitol when reduced with NaBH4 in CH3OH, we need to analyze the products. Both d-galactitol and d-talitol are sugar alcohols derived from hexoses. D-galactitol is derived from D-galactose, while D-talitol is derived from D-talose. Therefore, When a ketohexose is reduced with NaBH4 in CH3OH to form a mixture of D-galactitol and D-talitol, the ketohexose in question is D-tagatose. In its Fischer projection, the structure of D-tagatose is as follows:
CHO
|
C(OH)H
|
C(OH)H
|
C(OH)H
|
C(OH)H
|
CH2OH
To convert it into the Fischer projection of D-galactitol, you need to change the top carbonyl (C=O) group to an alcohol (C-OH) group. Likewise, you can obtain D-talitol's Fischer projection by changing the C=O group and inverting the 2nd hydroxyl group's orientation.

To know more about ketohexose visit:

https://brainly.com/question/31114760

#SPJ11

in the electrolysis of water, what happens at the anode? select the correct answer below: hydrogen is oxidized hydrogen is reduced oxygen is oxidized oxygen is reduced

Answers

At the anode during the electrolysis of water, oxygen is oxidized.

During the electrolysis of water, water molecules are dissociated into hydrogen ions and hydroxide ions due to the flow of electric current. At the anode, which is the positive electrode, oxidation occurs. Oxidation involves the loss of electrons. In this case, the hydroxide ions present at the anode are oxidized to form oxygen gas.

The reaction that takes place at the anode during the electrolysis of water is as follows:

[tex]4OH- - > 2H_2O + O_2 + 4e-[/tex]

Here, the hydroxide ions lose electrons and are converted into oxygen gas. These electrons flow through the external circuit to the cathode, where reduction takes place. At the cathode, hydrogen ions are reduced to form hydrogen gas .

Therefore, during the electrolysis of water, at the anode, oxygen is oxidized, while at the cathode, hydrogen is reduced.

Learn more about electrolysis here:

https://brainly.com/question/12994141

#SPJ11

Using the periodic table to locate the element, write the condensed electron configuration of Ni.

Answers

The condensed electron configuration for Nickel can be written as [Ar] 3d8 4s2, where [Ar] represents the electronic configuration of argon in the third period of the periodic table.

The periodic table is a tool used by chemists to organize and predict the properties of elements. To locate the element Nickel (Ni) on the periodic table, we can find it in the transition metal group, specifically in the fourth row or period. The electron configuration shows the distribution of electrons in the atom's orbitals. In Nickel's case, the 28 electrons are distributed across the 3d and 4s orbitals. The 3d subshell has a higher energy level than the 4s subshell, and hence, the 4s orbital is filled before the 3d orbitals.

To learn more about periodic table click here https://brainly.com/question/28747247

#SPJ11

Calculate the change in enthalpy of the reaction below when aqueous carbonic acid reacts with aqueous potassium hydroxide, given the following heats of formation: Carbonic acid (aq) AH'= -699.7 kJ/mol; Potassium hydroxide (aq) AH"=-115.3 kJ/mol, Potassium carbonate AH = -282.3 kJ/mol, and water AHY = -285.8 kJ/mol _H2CO3(aq) + _KOH(aq) — _K.CO3(aq) + _H2O(1)

Answers

To calculate the change in enthalpy (ΔH) for the reaction, you can use the following formula:
ΔH = Σ[ΔH(products)] - Σ[ΔH(reactants)]
For the reaction: H2CO3(aq) + KOH(aq) → K2CO3(aq) + H2O(l)ΔH(products) = ΔH(K2CO3) + ΔH(H2O) = -282.3 kJ/mol + (-285.8 kJ/mol) = -568.1 kJ/mol
ΔH(reactants) = ΔH(H2CO3) + ΔH(KOH) = -699.7 kJ/mol + (-115.3 kJ/mol) = -815 kJ/mol
ΔH = (-568.1 kJ/mol) - (-815 kJ/mol) = 246.9 kJ/mol


The change in enthalpy (ΔH) for the given reaction is 246.9 kJ/mol.To calculate the change in enthalpy of the reaction, we need to use the heats of formation of the reactants and products. The balanced chemical equation shows that 1 mole of carbonic acid reacts with 1 mole of potassium hydroxide to form 1 mole of potassium carbonate and 1 mole of water.The enthalpy change of the reaction can be calculated using the following formula:
ΔH = ΣnΔHf(products) - ΣnΔHf(reactants)
Where ΔH is the change in enthalpy, Σn is the sum of the moles of each compound, and ΔHf is the heat of formation.
Substituting the values given, we get:
ΔH = (1 × -282.3 kJ/mol) + (1 × -285.8 kJ/mol) - (1 × -699.7 kJ/mol) - (1 × -115.3 kJ/mol)
ΔH = -567.8 kJ/mol + 814.4 kJ/mol
ΔH = 246.6 kJ/mol
The change in enthalpy of the reaction is 246.6 kJ/mol.

To know more about enthalpy visit:

https://brainly.com/question/29145818

#SPJ11

a sample of gas is found to exert 14.00 kPa at 353 K.What pressure would the sample exert if the gas was heated to 376 K

Answers

As the gas is heated to 376 K, the sample would exert a pressure of approximately 14.91 kPa according to Gay-Lussac's law.

What is the final pressure of the gas?

Gay-Lussac's law states "that the pressure exerted by a given quantity of gas varies directly with the absolute temperature of the gas".

It is expressed as;

[tex]\frac{P_1}{T_1}=\frac{P_2}{T_2}[/tex]

Given that

P₁ = initial pressure = 14.00 kPa

T₁ = initial temperature (in Kelvin) = 353 K

T₂ = final temperature (in Kelvin) = 376 K

P₂ = final pressure = ?

Plug the given values into the above formula and solve for the final pressure.

[tex]\frac{P_1}{T_1}=\frac{P_2}{T_2}\\\\P_1T_2 = P_2T_1\\\\P_2 = \frac{P_1T_2 }{T_1} \\\\P_2 = \frac{ 14\ *\ 376 }{353} \\\\P_2 = 14.91 \ kPa[/tex]

Therefore, the final pressure is approximately 14.91 kPa.

Learn more about Gay-Lussac's law here: brainly.com/question/1358307

#SPJ1

According to Arrhenius theory, which of the following is a base?
a) CsOH
b) HOOH
c) CH3OH
d) HCOOH
e) CH3COOH

Answers

The answer to the question "According to Arrhenius theory, which of the following is a base?" is CsOH.

According to Arrhenius theory, a base is a substance that produces hydroxide ions (OH-) when dissolved in water.

From the given options, only CsOH (cesium hydroxide) can be considered a base because it produces OH- ions when dissolved in water.

The other options do not produce OH- ions when dissolved in water. HOOH (hydrogen peroxide) is a compound that can act as an oxidizing agent and can also behave as an acid when it donates a proton to another substance.

CH3OH (methanol) and HCOOH (formic acid) are both organic compounds that do not have OH- ions in their structure. CH3COOH (acetic acid) is a weak organic acid that dissociates partially in water to produce H+ ions instead of OH- ions, making it an acid rather than a base.

To know more about Arrhenius theory visit:

https://brainly.com/question/3920636

#SPJ11

An electron in a one-dimensional box requires energy with wavelength 8080 nm to excite it from the n = 2 energy level to the n = 3 energy level. Calculate the length of the box. For a 1-D particle in a box, the quantized energy is given by:
a. 1.50 nm
b. 3.50 nm
c. 3.00 nm
d. 1.00 nm
e. 2.50 nm

Answers

The length of the box is 12,120 nm for a quantized energy.

What is quantized energy?

Quantized energy refers to the concept in quantum mechanics that energy is "quantized," meaning it can only exist in specific discrete values or levels rather than being continuous. In other words, certain systems or particles can only possess specific amounts of energy, and transitions between these energy levels occur in discrete steps.

For a one-dimensional box, the quantized energy levels are given by the equation:

E = (n²h²)/(8mL²)

Given that the wavelength of the light required to excite the electron from n = 2 to n = 3 is 8080 nm, we can use the following relationship:

λ = 2L/n

where λ is the wavelength, L is the length of the box, and n is the energy level.

Let's calculate the length of the box:

λ = 8080 nm = 8.080 μm

n = 3

Substituting these values into the equation, we get:

8.080 μm = 2L/3

Solving for L, we find:

L = (8.080 μm * 3) / 2

L = 12.12 μm

Converting the length to nm:

L = 12.12 μm * 1000 nm/μm

L = 12,120 nm

Therefore, the length of the box is 12,120 nm for a quantized energy. None of the given options (a, b, c, d, e) match this value, so none of the options are correct.

To learn more about quantized energy,

https://brainly.com/question/30872553

#SPJ4

Which of the following explains how one of the postulates in John Dalton's atomic theory was later subjected to change?
Choice 1
Various scientists found that all atoms of a particular element are identical
Choice 2
Some scientists found that atoms combine in simple whole number ratios to form compounds.
Choice 3
Various scientists found that atoms consist of subatomic particles with varying mass and charge.
Choice 4
Some scientists found that bonds between atoms are broken, rearranged, or reformed during reactions.

Answers

answer

The answer is **Choice 3**.

steps

Various scientists found that atoms consist of subatomic particles with varying mass and charge. This led to the discovery of protons, neutrons, and electrons which are the subatomic particles that make up atoms. John Dalton's atomic theory was later modified to include these subatomic particles.

the 'a' form of glycogen phosphorylase is present. which of the following are likely (select all that apply): only the r form exists only the t form exists allosteric effectors are less potent allosteric effectors are more potent glucagon is in the bloodstream insulin is in the bloodstream

Answers

Based on the presence of the 'a' form of glycogen phosphorylase, it is likely that only the R form exists, allosteric effectors are more potent, and glucagon is in the bloodstream.

Based on the given information that the 'a' form of glycogen phosphorylase is present, the following statements are likely:

Only the R form exists: The 'a' form of glycogen phosphorylase corresponds to the active, phosphorylated form. In this state, only the R (relaxed) form exists. The T (tense) form is the inactive, non-phosphorylated state.

Allosteric effectors are more potent: The R form of glycogen phosphorylase is more sensitive to allosteric effectors, meaning that these effectors are more potent in regulating its activity. Allosteric effectors can activate or inhibit the enzyme's function by binding to specific allosteric sites.

Glucagon is in the bloodstream: Glucagon is a hormone released by the pancreas in response to low blood sugar levels. It stimulates the breakdown of glycogen into glucose, activating glycogen phosphorylase. Therefore, when the 'a' form of glycogen phosphorylase is present, it suggests that glucagon is in the bloodstream.

The following statement is not likely:

Insulin is in the bloodstream: Insulin is a hormone released by the pancreas in response to high blood sugar levels. It promotes the storage of glucose as glycogen and inhibits glycogen phosphorylase activity. Therefore, when the 'a' form of glycogen phosphorylase is present, it indicates a state of glycogen breakdown, which is not consistent with insulin being in the bloodstream.

In conclusion, based on the presence of the 'a' form of glycogen phosphorylase, it is likely that only the R form exists, allosteric effectors are more potent, and glucagon is in the bloodstream.

To know more about glycogen visit:

https://brainly.com/question/4303062

#SPJ11

most nucleophilic and the least nucleophilic of the following: a) BH3 b) HC≡CNa c) CH3CH2OH d) NH3 e) CH3CH2ONa

Answers

NH3 is the most nucleophilic molecule among the options, while BH3 is the least nucleophilic molecule. HC≡CNa and CH3CH2ONa are also strong nucleophiles due to the presence of the metal ion, while CH3CH2OH has some nucleophilic character but is less nucleophilic than the other options.

Nucleophilicity refers to the ability of a molecule to donate a pair of electrons to form a new covalent bond. The most nucleophilic molecule among the options is NH3, which has a lone pair of electrons on the nitrogen atom that can be easily donated to a molecule in need of electrons. NH3 is often used in organic synthesis as a nucleophile. On the other hand, BH3 is the least nucleophilic molecule among the options due to its lack of a lone pair of electrons. This makes it difficult for BH3 to donate electrons to form a new covalent bond.
HC≡CNa and CH3CH2ONa are both organometallic compounds that have strong nucleophilic properties due to the presence of the metal ion. These compounds have negatively charged carbon atoms that can easily donate a pair of electrons to form a new covalent bond. Finally, CH3CH2OH is a polar molecule that has some nucleophilic character, but it is less nucleophilic than NH3, HC≡CNa, and CH3CH2ONa.
To know more about nucleophilic visit:

https://brainly.com/question/31425447

#SPJ11

Other Questions
How do the work-energy and impulse-momentum theorems relate to the principles of energy and momentum conservation? Explain the role of the system versus the environment, and consider what these theorems imply if we consider the universe to be the system. How did the foreign exchange market operate in thebeginning? which tcp/ip utility gives you the following output?answera. netstat -ab. netstatc. netstat -rd. netstat -s PLEASE DO ASAPThe eigenvalues of the coefficient matrix can be found by inspection or factoring. Apply the eigenvalue method to find a general solution of the system. 7 3 7 = 3 11 3 y 7 3 7 which managerial skill set is particularly important for first-line managers suppose that a 92 %confidence interval for a population proportion p is to be calculated based on a sample of 250 individuals. the multiplier to use is (give your answer rounded to 2 decimal places) Indicate which of the following has the lowest standard molar entropy (S).CH4(g)Na (s)CH3CH2OH (l)He (g)H2O (s) describe a 2-stack pda that recognizes the language l = { ww | w in {0,1}* } on june 30, peppy, corp. purchased for cash at $17.50 per share 80% of spunky company's 100,000 total shares of outstanding common stock. the active market price for shares on that date was $15 per share. at june 30, spunky's balance sheet showed a carrying amount of net assets of $1,500,000 and the fair value of spunky's assets and liabilities equaled their carrying amounts except for property, plant, and equipment which exceeded its carrying amount by $250,000. in its june 30 consolidated balance sheet, what amount should peppy report as noncontrolling interest? When applied to Mendel's experiments, the term true-breeding means a self-fertilization of two plants that produces _____ (Fill in the blank) 3Enter the correct answer in the box.What is the quotient of0(0) 101ofVo q15a12ath+1XAssume that the denominator does not equal zero.11< > 2BaABEHP98sinCSC-1cos tan sin cossec cot log log a golfer strikes a 0.050-kg golf ball, giving it a speed of 70.0 m/s. what is the magnitude of the impulse imparted to the ball? A campus newspaper plans a major article on spring break destinations. The reporters select a simple random sample of three resorts at each destination and intend to call those resorts to ask about their attitudes toward groups of students as guests. Here are the resorts listed in one city. 1 Aloha Kai 2 Anchor Down 3 Banana Bay 4 Ramada 5 Captiva 6 Casa del Mar 7 Coconuts 8 Palm Tree A numerical label is given to each resort. They start at the line 108 of the random digits table. What are the selected hotels? relationships, processes, and structures within a community that promote cooperation for mutual benefit describes: A line-of-credit is similar to a short-term loan or note payable in that there is an immediate effect on the balance sheet and income statement (expected interest expense) when the line is established.Group of answer choicesTrueFalse Create TWO equivalent expressions for the following.14(816x)+3x Consider F and C below. F(x, y) = Sxy 1 + 9x2yj Cr(t) = XYZ Bank lends $20,000,000 to ABC Corporation which has a credit rating of BB. The spread of a BB rated benchmark bond is 2.5 percent over the U.S. Treasury bond of similar maturity. XYZ Bank sells a $20,000,000 one-year credit forward contract to IWILL Insurance Company. At maturity, the spread of the benchmark bond against the Treasury bond is 2.1 percent, and the benchmark bond has a modified duration of 4 years. What is the amount of payment paid by whom to whom at the maturity of the credit forward contract? 9. do (cos 3x sin? 3x) = dc A. 6 sin 3x 9 sin3x B. 6 sin 3x + 9 sin 3.0 C. 9 sin 3x 6 sin 3x 9 D. 9 sin 3x + 6 sin? 3.x Under What Conditions Will The Behavior Of A Real Gas Best Approximate The Behavior Of An Ideal gas? I High temperature II High pressurea) I onlyb) II onlyc) Both I and IId) Neither I nor II