To find the derivative of (2x^(1/3))^2 with respect to x, we can apply the chain rule. The derivative is 4/3 x^(-1/3).
Let's break down the expression (2x^(1/3))^2 to simplify the derivative calculation. First, we can rewrite it as (2^2)(x^(1/3))^2, which is equal to 4x^(2/3). To find the derivative of 4x^(2/3) with respect to x, we apply the power rule. The power rule states that if f(x) = x^n, then the derivative of f(x) with respect to x is n * x^(n-1). Using the power rule, the derivative of x^(2/3) is (2/3)x^((2/3)-1), which simplifies to (2/3)x^(-1/3). Next, we multiply the derivative of x^(2/3) by the constant 4, yielding (4/3)x^(-1/3). Therefore, the derivative of (2x^(1/3))^2 with respect to x is 4/3 x^(-1/3). Derivatives are defined as the varying rate of change of a function with respect to an independent variable. The derivative is primarily used when there is some varying quantity, and the rate of change is not constant. The derivative is used to measure the sensitivity of one variable (dependent variable) with respect to another variable (independent variable).
Learn more about power rule here:
https://brainly.com/question/30226066
#SPJ11
There are eleven shirts in your closet, four blue, four green, and three red. You randomly select one to wear. It is blue or green.
Answer:
The probability is 8/11
Step-by-step explanation:
I think the question is the probability the one you choose is to be blue or green.
The probability to be blue is 4/11.
The probability to be green is 4/11.
so the answer is 8/11.
The population of a small city is 71,000. 1. Find the population in 25 years if the city grows at an annual rate of 2.5% per year. people. If necessary, round to the nearest whole number. 2 If the city grows at an annual rate of 2.5% per year, in how many years will the population reach 117,000 people? years. If necessary, round to two decimal places. In 3. Find the population in 25 years if the city grows at a continuous rate of 2.5% per year. people. If necessary, round to the nearest whole number. 4 If the city grows continuously by 2.5% each year, in how many years will the population reach 117,000 people? In years. If necessary, round to two decimal places. 5. Find the population in 25 years if the city grows at rate of 2710 people per year. people. If necessary, round to the nearest whole number. 6. If the city grows by 2710 people each year, in how many years will the population reach 117,000 people? In years. If necessary, round to two decimal places.
The population of a small city with an initial population of 71,000 will reach approximately 97,853 people in 25 years if it grows at an annual rate of 2.5%.
It will take approximately 14.33 years for the population to reach 117,000 people under the same growth rate.
To calculate the population in 25 years with an annual growth rate of 2.5%, we can use the formula:Population in 25 years = Initial population * (1 + Growth rate)^Number of years.
Substituting the values, we have
[tex]71,000 * (1 + 0.025)^{25[/tex] ≈ 97,853 people.
To determine the number of years it takes for the population to reach 117,000 people with a 2.5% annual growth rate, we can use the formula:Number of years = log(Population / Initial population) / log(1 + Growth rate).
Substituting the values, we have
log(117,000 / 71,000) / log(1 + 0.025) ≈ 14.33 years.
In the case of continuous growth at a rate of 2.5% per year, the population in 25 years can be calculated using the formula:Population in 25 years = Initial population * e^(Growth rate * Number of years).
Substituting the values, we have
71,000 * [tex]e^{(0.025 * 25)[/tex] ≈ 98,758 people.
To determine the number of years it takes for the population to reach 117,000 people with continuous growth at a rate of 2.5% per year, we can use the formula:Number of years = log(Population / Initial population) / (Growth rate).
Substituting the values, we have
log(117,000 / 71,000) / (0.025) ≈ 14.54 years.
If the city grows at a rate of 2,710 people per year, the population in 25 years can be calculated by adding the annual growth to the initial population:Population in 25 years = Initial population + (Growth rate * Number of years).
Substituting the values, we have
71,000 + (2,710 * 25) = 141,750 people.
To determine the number of years it takes for the population to reach 117,000 people with an annual growth of 2,710 people, we can use the formula:Number of years = (Population - Initial population) / Growth rate.
Substituting the values, we have
(117,000 - 71,000) / 2,710 ≈ 17.01 years
To learn more about population visit:
brainly.com/question/9887468
#SPJ11
Let R be the region in the first quadrant lying outside the circle r=87 and inside the cardioid r=87(1+cos 6). Evaluate SI sin e da. R
To evaluate ∬ᵣ sin(θ) dA over region R, where R is the region in the first quadrant lying outside the circle r = 87 and inside the cardioid r = 87(1 + cos(6θ)): the answer is 0.
The given region R lies between two curves: the circle r = 87 and the cardioid r = 87(1 + cos(6θ)). The region is bounded by the x-axis and the positive y-axis.
Since the region lies outside the circle and inside the cardioid, there is no overlap between the two curves. Therefore, the region R is empty, resulting in an area of zero.
Since the integral of sin(θ) over an empty region is zero, the value of ∬ᵣ sin(θ) dA is 0.
Hence, the main answer is 0.
learn more about cardioid here:
https://brainly.com/question/32730534
#SPJ11
Given the function f(2) ſ 2x +3 if 3x + 5 if 3 3 Find the average rate of change in f on the interval [ – 3, 4]. Submit Question
The average rate of change in f on the interval [ − 3, 4] is [tex]$\frac{20}{7}$[/tex]or 2.857 (rounded to three decimal places).
To find the average rate of change of a function over an interval, we use the formula;
[tex]\$$\text{average rate of change }=\frac{f(b)-f(a)}{b-a}$$[/tex]
where a and b are the endpoints of the interval.
Using the given function, f(2) ſ 2x +3 if 3x + 5 if 3, we will first find the values of f(−3) and f(4).
Let's evaluate f(-3) [tex]$$\begin{aligned}f(-3)&= 2(-3) +3 \\\\ &= -6+3 \\\\ &= -3 \end{aligned}$$[/tex]
Now let's evaluate f(4) [tex]$$\begin{aligned}f(4)&= 3(4) + 5 \\\\ &= 12+5 \\\\ &= 17 \end{aligned}$$[/tex]
We can now plug these values into the average rate of change formula:
[tex]$$\begin{aligned}\text{average rate of change }&=\frac{f(b)-f(a)}{b-a} \\\\ &=\frac{f(4)-f(-3)}{4-(-3)} \\\\ &=\frac{17-(-3)}{4+3} \\\\ &=\frac{20}{7} \end{aligned}$$[/tex]
Therefore, the average rate of change in f on the interval [ − 3, 4] is [tex]$\frac{20}{7}$[/tex] or 2.857 (rounded to three decimal places).
To know more about interval, visit:
https://brainly.com/question/11051767#
#SPJ11
Sketch the graph of: y = cosechx in the range x = −5 to x =
5.
The graph of y = cosech(x) in the range x = -5 to x = 5 is a hyperbolic function that approaches zero as x approaches positive or negative infinity.
To sketch the graph of y = cosech(x) in the range x = -5 to x = 5, we can start by understanding the behavior and properties of the cosech(x) function. Cosech(x), also known as the hyperbolic cosecant function, is defined as the reciprocal of the hyperbolic sine function: cosech(x) = 1/sinh(x). The hyperbolic sine function sinh(x) can be expressed as (e^x - e^(-x))/2, where e represents the base of the natural logarithm. By taking the reciprocal of this expression, we obtain the cosech(x) function.
In the given range of x = -5 to x = 5, we can observe that as x approaches positive or negative infinity, the value of cosech(x) approaches zero. This can be understood from the definition of cosech(x) as the reciprocal of sinh(x), which grows infinitely large as x approaches infinity or negative infinity. Therefore, cosech(x) approaches zero in the extremes of the range. Additionally, the graph of cosech(x) will have vertical asymptotes at x = 0 since the denominator of the expression becomes zero when x approaches 0. As x gets closer to 0 from either side, the values of cosech(x) become very large in magnitude, approaching positive or negative infinity.
Considering these properties, we can sketch the graph of cosech(x) in the given range as follows: Starting from x = -5, we observe that the value of cosech(x) is very close to zero. As x approaches 0, the graph rapidly increases in magnitude, reaching large positive or negative values. Then, as x moves away from 0 towards the endpoints of the range (x = -5 and x = 5), the values of cosech(x) gradually approach zero again. To accurately depict the graph, it is recommended to plot several points within the range and connect them smoothly, keeping in mind the behavior and shape of the cosech(x) function.
Learn more about Range : brainly.com/question/20259728
#SPJ11
The region bounded by y = e24 , y = 0, x = -1,3 = 0 is rotated around the c-axis. Find the volume. volume = Find the volume of the solid obtained by rotating the region in the first quadrant bounded
To find the volume of the solid obtained by rotating the region bounded by y = e^2x, y = 0, x = -1, and x = 3 around the y-axis, we can use the method of cylindrical shells.
The height of each cylindrical shell will be the difference between the two functions: y = e^2x and y = 0. The radius of each cylindrical shell will be the x-coordinate of the corresponding point on the curve y = e^2x.Let's set up the integral to find the volume:[tex]V = ∫[a,b] 2πx * (f(x) - g(x)) dx[/tex]
Where a and b are the x-values that define the region (in this case, -1 and 3), f(x) is the upper function (y = e^2x), and g(x) is the lower function (y = 0).V = ∫[-1,3] 2πx * (e^2x - 0) dxSimplifyingV = 2π ∫[-1,3] x * e^2x dxTo evaluate this integral, we can use integration by parts. Let's assume u = x and dv = e^2x dx. Then, du = dx and v = (1/2)e^2x.Applying the integration by parts formula
[tex]∫ x * e^2x dx = (1/2)xe^2x - ∫ (1/2)e^2x dx= (1/2)xe^2x - (1/4)e^2x + C[/tex]Now, we can evaluate the definite integral:
[tex]V = 2π [(1/2)xe^2x - (1/4)e^2x] evaluated from -1 to 3V = 2π [(1/2)(3)e^2(3) - (1/4)e^2(3)] - [(1/2)(-1)e^2(-1) - (1/4)e^2(-1)]V = 2π [(3/2)e^6 - (1/4)e^6] - [(-1/2)e^(-2) - (1/4)e^(-2)][/tex]Simplifying further
[tex]V = 2π [(3/2)e^6 - (1/4)e^6] - [(-1/2)e^(-2) - (1/4)e^(-2)]V = 2π [(3/2 - 1/4)e^6] - [(-1/2 - 1/4)e^(-2)]V = 2π [(5/4)e^6] - [(-3/4)e^(-2)]V = (5/2)πe^6 + (3/4)πe^(-2)[/tex]Therefore, the volume of the solid obtained by rotating the region bounded by y = e^2x, y = 0, x = -1, and x = 3 around the y-axis is (5/2)πe^6 + (3/4)πe^(-2) cubic units.
To learn more about obtained click on the link below:
brainly.com/question/27924106
#SPJ11
A 10. man carries a b can of the case that encircles a site with radu The high and the makes at the complete revolution Supporters hole in the can of paint and 3 of paint as stadily out of the can during thema's ascent How much work is done by the man against gravity in diming to the top -Ibs
The work done against gravity is given by(Weight of the Can + 3p) x g x H = (10lbs + 3p) x 32.2 ft/s² x HAnswer: (10lbs + 3p) x 32.2 ft/s² x H.
A 10-man carries a can of paint that encircles a site with radius R. The height that the man carries the paint to complete a revolution is H. Suppose there is a hole in the can of paint, and 3lbs of paint spill out of the can during the man's ascent. The weight of the paint that the man is carrying is calculated using the density of the paint multiplied by the volume of the paint. We have a volume of 3lbs. Let's say the density of the paint is p. Then the weight of the paint the man is carrying is 3p.Therefore, the total weight that the man is carrying is (Weight of the Can + 3p) lbsThe work done by the man against gravity is given by:Work done against gravity = mghwhere m is the mass of the man and the paint can, and g is the acceleration due to gravity.Work done against gravity = (Weight of the Can + 3p) x g x HWhen the man carries the can of paint around the site, the work done against gravity is zero because the height of the paint can is not changing. Hence the work done against gravity is equal to the work done in lifting the can of paint from the ground to the top of the site.
Learn more about gravity here:
https://brainly.com/question/28887915
#SPJ11
Let f(x,y,z) = y^2 +(2xy+e^z)j+ezyk. if f is a conservative vector field, find the most general function f such that f=∇f
The most general function f(x, y, z) such that f = ∇f is given by:
f(x, y, z) = xy^2 + h(y, z) + g(x, z)
where h(y, z) and g(x, z) can be any arbitrary functions of their respective variables.
To determine the most general function f such that f = ∇f, find a scalar function f(x, y, z) that satisfies the condition.
The vector field f(x, y, z) = y^2 + (2xy + e^z)j + ezyk can be written as:
f(x, y, z) = ∇f(x, y, z)
where ∇ represents the gradient operator. The gradient of a scalar function f(x, y, z) is given by:
∇f(x, y, z) = (∂f/∂x)i + (∂f/∂y)j + (∂f/∂z)k
Comparing the vector field f(x, y, z) with the gradient ∇f(x, y, z), we can equate the corresponding components:
∂f/∂x = y^2
∂f/∂y = 2xy + e^z
∂f/∂z = ezy
To solve these equations, we integrate each equation with respect to the corresponding variable:
∫∂f/∂x dx = ∫y^2 dx
∫∂f/∂y dy = ∫(2xy + e^z) dy
∫∂f/∂z dz = ∫ezy dz
Integrating each equation yields:
f(x, y, z) = xy^2 + h(y, z) + g(x, z)
where h(y, z) and g(x, z) are arbitrary functions of their respective variables.
Therefore, the most general function f(x, y, z) such that f = ∇f is given by:
f(x, y, z) = xy^2 + h(y, z) + g(x, z)
where h(y, z) and g(x, z) can be any arbitrary functions of their respective variables.
Learn more about general function here:
https://brainly.com/question/8050101
#SPJ11
Starting at age 35, you deposit $2000 a year into an IRA account for retirement. Treat the yearly deposits into the account as a continuous income stream. If money in the account earns 7%, compounded continuously, how much will be in the account 30 years later, when you retire at age 65? How much of the final amount is interest? What is the value of the IRA when you turn 65? $ (Round to the nearest dollar as needed.) How much of the future value is interest? $ (Round to the nearest dollar as needed.)
To calculate the final amount in the IRA account after 30 years of continuous deposits, we can use the formula for the future value of a continuous income stream.
Using the formula for continuous compound interest, the future value (FV) can be calculated as FV = P * e^(rt), where P is the annual deposit, e is the base of the natural logarithm, r is the interest rate, and t is the time in years. Substituting the given values, we have P = $2000, r = 7% = 0.07, and t = 30. Plugging these values into the formula, we get FV = $2000 * e^(0.07 * 30).
The amount of interest earned can be found by subtracting the total amount deposited from the final value. The interest amount is FV - (P * t), which gives us the interest earned over the 30-year period. To obtain the value of the IRA at age 65, we evaluate the expression FV and round it to the nearest dollar. This will give us the approximate amount in the account when you retire.
Finally, to determine the portion of the future value that is interesting, we subtract the total amount deposited (P * t) from the final value (FV). This will provide the interest portion of the total value.
Learn more about compound interest here: brainly.in/question/1950647
#SPJ11
Find the marginal average cost function if cost and revenue are given by C(x)= 168 + 7 7x and R(x) = 5x -0.06x2 The marginal average cost function is c'(x) = 0
The marginal average cost function is given by c'(x) = -168/x², where x represents the quantity produced or the level of output.
To find the marginal average cost function, we first need to find the average cost function. The average cost is given by C(x)/x, where C(x) is the cost function and x is the quantity produced.
Average Cost = C(x)/x = (168 + 7.7x)/x
To find the marginal average cost, we take the derivative of the average cost function with respect to x.
C'(x) = (d/dx)(168 + 7.7x)/x
Using the quotient rule, we differentiate the numerator and denominator separately:
C'(x) = [(0 + 7.7)(x) - (168 + 7.7x)(1)]/x²
Simplifying the numerator:
C'(x) = (7.7x - 168 - 7.7x)/x²
The x terms cancel out:
C'(x) = -168/x²
Therefore, the marginal average cost function is c'(x) = -168/x²
Learn more about the cost function at
https://brainly.com/question/29583181
#SPJ4
The question is -
Find the marginal average cost function if cost and revenue are given by C(x) = 168 + 7.7x and R(x) = 5x - 0.06x².
The marginal average cost function is c'(x) =
Solve the initial value problem y"(t)=6t+2, y(0)=-1, y'(0)=2
The solution to the initial value problem y"(t)=6t+2, y(0)=-1, y'(0)=2 is y(t) = t^3 + t^2 + 2t - 1.
To solve the initial value problem y"(t)=6t+2, y(0)=-1, y'(0)=2, we can integrate the given equation twice.
First, we integrate 6t+2 with respect to t to get the expression for y'(t):
y'(t) = 3t^2 + 2t + C1, where C1 is a constant of integration.
Next, we integrate y'(t) with respect to t to obtain the expression for y(t):
y(t) = t^3 + t^2 + C1*t + C2, where C2 is another constant of integration.
Using the initial conditions y(0)=-1 and y'(0)=2, we can solve for C1 and C2:
y(0) = C2 = -1
y'(0) = C1 = 2
Substituting these values back into our expression for y(t), we get the solution to the initial value problem:
y(t) = t^3 + t^2 + 2t - 1.
Therefore, the solution to the initial value problem y"(t)=6t+2, y(0)=-1, y'(0)=2 is y(t) = t^3 + t^2 + 2t - 1.
To know more about initial value refer here:
https://brainly.com/question/17613893#
#SPJ11
URGENT :)) PLS HELP!
(Q4)
Given Matrix A consisting of 3 rows and 2 columns. Row 1 shows 3 and negative 1, row 2 shows 2 and 0, and row 3 shows negative 3 and 3. and Matrix B consisting of 3 rows and 2 columns. Row 1 shows 3 and 3, row 2 shows negative 5 and 4, and row 3 shows negative 4 and 2.,
what is A − B?
a) Matrix consisting of 3 rows and 2 columns. Row 1 shows 0 and negative 4, row 2 shows negative 3 and negative 4, and row 3 shows 1 and 1.
b) Matrix consisting of 3 rows and 2 columns. Row 1 shows 0 and negative 4, row 2 shows 7 and negative 4, and row 3 shows 1 and 1.
c) Matrix consisting of 3 rows and 2 columns. Row 1 shows 0 and negative 4, row 2 shows 7 and 4, and row 3 shows negative 1 and 0.
d) Matrix consisting of 3 rows and 2 columns. Row 1 shows 6 and 2, row 2 shows 7 and 4, and row 3 shows negative 7 and 1.
Answer:
The difference between two matrices of the same size is calculated by subtracting the corresponding elements of the two matrices.
Let’s apply this to matrices A and B:
A - B = [3 -1; 2 0; -3 3] - [3 3; -5 4; -4 2] = [0 -4; 7 -4; 1 1]
So the correct answer is B) Matrix consisting of 3 rows and 2 columns. Row 1 shows 0 and negative 4, row 2 shows 7 and negative 4, and row 3 shows 1 and 1.
Dilution and Titration A. (7 points) A student in the laboratory needs a 0.250 M nitric acid solution, HNO3. What volume in ml, of a 12.00 M nitric acid stock solution is required to prepare 500.00 mL of 0.250 M nitric acid solution? Box your final answer B. (10 Points) The student places a 25.00 mL sample of the 0.250 M nitric acid solution prepared above in an Erlenmeyer flask. Determine the volume in mL of 0.500 M barium hydroxide, Ba(OH)2, that is required to completelytitrate the sample of nitric acid in the flask to the equivalence point. Box your final answer. C. (3 Points) Identify the major species present in the solution in the titration of nitric acid before titration begins. See Model Key below for hints. Major Species
A final volume of 500.00 mL to obtain a 0.250 M nitric acid solution. 6.25 mL of the 0.500 M barium hydroxide solution is required to completely titrate the sample of nitric acid to the equivalence point.
A. To prepare a 0.250 M nitric acid (HNO3) solution, the student needs to dilute a 12.00 M nitric acid stock solution. The desired final volume is 500.00 mL. To determine the volume of the stock solution needed, we can use the dilution formula:
C1V1 = C2V2
where C1 is the initial concentration, V1 is the initial volume, C2 is the final concentration, and V2 is the final volume.
In this case, C1 = 12.00 M, V1 is the volume of the stock solution we want to find, C2 = 0.250 M, and V2 = 500.00 mL.
Using the dilution formula, we can rearrange the equation to solve for V1:
V1 = (C2 * V2) / C1
= (0.250 M * 500.00 mL) / 12.00 M
= 10.42 mL
Therefore, the student needs to measure 10.42 mL of the 12.00 M nitric acid stock solution and then dilute it to a final volume of 500.00 mL to obtain a 0.250 M nitric acid solution.
B. The student has a 25.00 mL sample of the 0.250 M nitric acid solution and wants to determine the volume of 0.500 M barium hydroxide (Ba(OH)2) required to completely titrate the nitric acid. The balanced chemical equation for the reaction between nitric acid and barium hydroxide is:
2HNO3 + Ba(OH)2 → Ba(NO3)2 + 2H2O
From the balanced equation, we can see that the stoichiometric ratio between nitric acid and barium hydroxide is 2:1. This means that for every 2 moles of nitric acid, 1 mole of barium hydroxide is required.
First, we need to calculate the number of moles of nitric acid in the 25.00 mL sample:
moles of HNO3 = concentration * volume
= 0.250 M * 0.02500 L
= 0.00625 moles
Since the stoichiometric ratio is 2:1, we need half the number of moles of barium hydroxide compared to nitric acid. Therefore:
moles of Ba(OH)2 = 0.00625 moles / 2
= 0.003125 moles
Now we can calculate the volume of the 0.500 M barium hydroxide solution required:
volume of Ba(OH)2 = moles / concentration
= 0.003125 moles / 0.500 M
= 0.00625 L
= 6.25 mL
Therefore, 6.25 mL of the 0.500 M barium hydroxide solution is required to completely titrate the sample of nitric acid to the equivalence point.
C. Before the titration begins, the major species present in the solution are the nitric acid (HNO3) and the solvent, which is most likely water (H2O). Nitric acid is a strong acid that dissociates completely in water to form hydrogen ions (H+) and nitrate ions (NO3-):
HNO3 (aq) → H+ (aq) + NO3- (aq)
Thus, in the solution, we would have HNO3 molecules, H+ ions, and NO3- ions. These species are the major contributors to the acidity of the solution and are responsible for the properties associated with nitric acid, such as its acidic taste and corrosive nature.
Learn more about sample here:
https://brainly.com/question/27860316
#SPJ11
USE
CALC 2 TECHNIQUES ONLY. find the radius of convergence for the
series E infinity n=1 (n^3x^n)/3^n. PLEASE SHOW ALL STEPS
The radius of convergence for the series[tex](n^3x^n)/3^n[/tex].
What is the radius of convergence for the given series?The radius of convergence of a power series can be determined using two common techniques: the ratio test and the root test. Applying the ratio test to the given series, we take the limit as n approaches infinity of the absolute value of the ratio of consecutive terms, [tex](n+1)^3x^(n+1)/(3^(n+1)) (n^3x^n)/(3^n)[/tex]. Simplifying the expression, we get the limit of (n+1)³/3n³ * |x|. As n tends to infinity, the limit evaluates to |x|/3. To ensure convergence, the absolute value of |x|/3 must be less than 1. Therefore, |x| < 3, and the radius of convergence is 1/3.
Learn more about convergence
brainly.com/question/29258536
#SPJ11
If F¹ =< P, Q, R > is a vector field in R³, P, Qy, Rz all exist, then the divergence of F is defined by:
The divergence of a vector field F = <P, Q, R> in three-dimensional space (R³) is defined as the scalar function that represents the rate at which the field "spreads out" or "diverges" from a given point.
The divergence of a vector field F = <P, Q, R> is denoted by ∇ · F, where ∇ (del) represents the gradient operator. The divergence is a scalar function that calculates the change in the flux of the vector field across an infinitesimally small volume around a point. It measures how the vector field expands or contracts at each point in space.
Mathematically, the divergence of F is given by the sum of the partial derivatives of its components with respect to their corresponding variables: ∇ · F = (∂P/∂x) + (∂Q/∂y) + (∂R/∂z). Geometrically, the divergence represents the density of the field's source or sink at a particular point. Positive divergence indicates an outward flow, while negative divergence implies an inward flow.
The divergence theorem, also known as Gauss's theorem, establishes a relationship between the divergence and the flux of a vector field through a closed surface. It states that the flux of a vector field across a closed surface is equal to the volume integral of the field's divergence over the region enclosed by the surface.
In summary, the divergence of a vector field in three-dimensional space provides information about the rate at which the field diverges or converges at each point. It is a scalar function obtained by summing the partial derivatives of the field's components. The divergence theorem relates the divergence to the flux of the vector field through a closed surface.
Learn more about flux here:
https://brainly.com/question/15655691
#SPJ11
Bryan bought a packet of sweets. He ate 2/7 of them and gave 1/3 of the remainder to Tom. If he had 20 sweets left, how many sweets did he buy?
Answer: 210 sweets
Step-by-step explanation:
First you would multiply 20 by 3 because 20 is 1/3 of a number and you need to find the 3/3. That will give you 60. Than, because you have 2/7 and 2 does not go into 7, you divide 60 by two to get 1/7. You get 30 and than you multiply it by 7 to get 210.
mrs. morton has a special reward system for her class. when all her students behave well, she rewards them by putting 3 33 marbles into a marble jar. when the jar has 100 100100 or more marbles, the students have a party. right now, the jar has 24 2424 marbles. will the students have a party if mrs. morton rewards them 31 3131 additional times?
No, the students will not have a party if Mrs. Morton rewards them 31 additional times. Currently, the marble jar has 24 marbles. Each time Mrs. Morton rewards the students for good behavior, she adds 33 marbles to the jar.
So, if she rewards them 31 more times, the total number of marbles added to the jar would be 31 * 33 = 1023 marbles. Adding this to the initial 24 marbles, the total number of marbles in the jar would be 24 + 1023 = 1047 marbles. Since the condition for having a party is to have 100 or more marbles in the jar, the students would indeed have a party because 1047 is greater than 100.
However, there seems to be a discrepancy in the question. It states that the marble jar currently has 24 marbles, but the condition for having a party is to have 100 or more marbles. Therefore, based on the information given, the students should already be eligible for a party since they have 24 marbles, which is greater than 100. Adding 31 more sets of 33 marbles would only increase the number of marbles in the jar further. Hence, No, the students will not have a party if Mrs. Morton rewards them 31 additional times.
Learn more about number here: https://brainly.com/question/14690449
#SPJ11
10. Find an equation of the tangent line to the graph of the function f(x) 5x+3 at the point (2,13). x-1
The equation of the tangent line to the graph of the function f(x) = 5x + 3 at the point (2, 13) is given by y = 5x + 3.
The equation of the tangent line to the graph of the function f(x) = 5x + 3 at the point (2, 13) can be obtained using the derivative of the function f(x).
Therefore, let's first differentiate the function f(x) as follows:f(x) = 5x + 3dy/dx = 5
The slope of the tangent line to the graph of the function f(x) at the point (2, 13) is equal to the value of the derivative of the function evaluated at x = 2.dy/dx = 5 at x = 2.dy/dx = 5 at x = 2.
Now, we can use the slope of the tangent line and the given point (2, 13) to find the equation of the tangent line using the point-slope form of a linear equation. y - y1 = m(x - x1)
Here, y1 = 13, x1 = 2, and m = 5. Plugging these values, we get;y - 13 = 5(x - 2)Multiplying out the right side;y - 13 = 5x - 10Adding 13 to both sides, we get; y = 5x + 3.
Hence, the equation of the tangent line to the graph of the function f(x) = 5x + 3 at the point (2, 13) is given by y = 5x + 3.
Learn more about tangent here:
https://brainly.com/question/10053881
#SPJ11
1. A polyethylene cube is exposed to high temperatures and its sides expand at a rate of 0.03 centimeters per minute. How fast is the volume changing when one of its sides is 7 cm? 10:03 a.m. O dv/dt= 4.41 cm3/min b) O dv/dt= 0.42 cm3/min O dV=dt= 1.05 cm3/min 10:04 a.m. 2. A population of fish is increasing at a rate of P(t) = 2e 0.027 in fish per day. If at the beginning there are 100 fish. How many fish are there after 10 days? note: Integrate the function P(t)
at the beginning there are 100 fish but after 10 days, there are approximately 331.65 fish in the population.
(a) To find how fast the volume is changing when one side of the cube is 7 cm, we can use the formula for the volume of a cube: V = s^3, where s is the side length. Differentiating both sides with respect to time, we have dV/dt = 3s^2(ds/dt). Plugging in the given values, s = 7 cm and ds/dt = 0.03 cm/min, we get dV/dt = 3(7^2)(0.03) = 4.41 cm^3/min.
(b) To find the population of fish after 10 days, we can integrate the given growth rate function P(t) = 2e^(0.027t) over the interval [0, 10]. The integral of P(t) gives us the total change in population over the interval. Evaluating the integral, we have ∫(2e^(0.027t)) dt = [2/(0.027)]e^(0.027t) + C, where C is the constant of integration. Substituting the limits of integration, we find [2/(0.027)]e^(0.027(10)) - [2/(0.027)]e^(0.027(0)) = [2/(0.027)]e^(0.27) - [2/(0.027)]e^(0) ≈ 331.65 fish.after 10 days, there are approximately 331.65 fish in the population.
Learn more about population here:
https://brainly.com/question/30935898
#SPJ11
Which three points are on the plane 2x-7)+38-5-0? a. p(1,0,1), (3,1,2), and R(4,3,6) b. p(1,0,1). Q(2,2,3), and R(3,1,2) C. P(3,1,2), (4,3,6), and R(5,0,-2) d. p(4.3,6), 0(0,0,0), and R(3,1,2)
There are no three points among the given options that lie on the plane.
To determine which three points are on the plane 2x - 7y + 3z = 8, we can substitute the coordinates of each point into the equation and check if the equation holds true.
Let's check the options one by one:
a. p(1,0,1), Q(3,1,2), and R(4,3,6)
Substituting the coordinates of each point into the equation:
2(1) - 7(0) + 3(1) = 2 - 0 + 3 = 5 (not equal to 8)
2(3) - 7(1) + 3(2) = 6 - 7 + 6 = 5 (not equal to 8)
2(4) - 7(3) + 3(6) = 8 - 21 + 18 = 5 (not equal to 8)
b. p(1,0,1), Q(2,2,3), and R(3,1,2)
Substituting the coordinates of each point into the equation:
2(1) - 7(0) + 3(1) = 2 - 0 + 3 = 5 (not equal to 8)
2(2) - 7(2) + 3(3) = 4 - 14 + 9 = -1 (not equal to 8)
2(3) - 7(1) + 3(2) = 6 - 7 + 6 = 5 (not equal to 8)
c. P(3,1,2), Q(4,3,6), and R(5,0,-2)
Substituting the coordinates of each point into the equation:
2(3) - 7(1) + 3(2) = 6 - 7 + 6 = 5 (not equal to 8)
2(4) - 7(3) + 3(6) = 8 - 21 + 18 = 5 (not equal to 8)
2(5) - 7(0) + 3(-2) = 10 - 0 - 6 = 4 (not equal to 8)
d. p(4,3,6), Q(0,0,0), and R(3,1,2)
Substituting the coordinates of each point into the equation:
2(4) - 7(3) + 3(6) = 8 - 21 + 18 = 5 (not equal to 8)
2(0) - 7(0) + 3(0) = 0 - 0 + 0 = 0 (not equal to 8)
2(3) - 7(1) + 3(2) = 6 - 7 + 6 = 5 (not equal to 8)
None of the options have all three points that satisfy the equation 2x - 7y + 3z = 8. Therefore, there are no three points among the given options that lie on the plane.
To know more about the plane refer here:
https://brainly.com/question/18090420#
#SPJ11
Of all rectangles with a perimeter of 34, which one has the maximum area? (Give the dimensions.) Let A be the area of the rectangle.
The rectangle with dimensions 8 units by 9 units has the maximum area among all rectangles with a perimeter of 34.
To find the rectangle with the maximum area among all rectangles with a perimeter of 34, we need to consider the relationship between the dimensions of the rectangle and its area. Let's assume the length of the rectangle is L and the width is W. The perimeter of a rectangle is given by the formula P = 2L + 2W.
In this case, the perimeter is given as 34. Therefore, we have the equation 2L + 2W = 34. We can simplify this equation to L + W = 17.
To find the maximum area, we need to maximize the product of the length and width. Since L + W = 17, we can rewrite it as L = 17 - W and substitute it into the area formula A = L * W.
Now we have A = (17 - W) * W. To find the maximum area, we can take the derivative of A with respect to W, set it equal to zero, and solve for W. After calculating, we find that W = 9.
Substituting the value of W back into the equation L = 17 - W, we get L = 8. Therefore, the rectangle with dimensions 8 units by 9 units has the maximum area among all rectangles with a perimeter of 34.
Learn more about area here: https://brainly.com/question/1631786
#SPJ11
Alguien que me explique como se resuelve esta operación por pasos 4(2-x) <-x+5
The solution to the given inequality is x > 1.
Here's the process:
Distribute the 4 to the terms inside the parentheses:
4 · 2 · -4 · x < -x + 5
Simplify:
8 - 4x < -x + 5
Rearrange the equation to isolate the variable terms on one side and the constant terms on the other side.
In this case, we'll move the -x term to the left side:
-4x + x < 5 - 8
Simplify:
-3x < -3
Divide both sides of the inequality by -3.
Remember that when dividing by a negative number, the direction of the inequality symbol flips:
(-3x)/(-3) > (-3)/(-3)
Simplify:
x > 1
So, the solution to the given inequality is x > 1.
Learn more about inequality click;
https://brainly.com/question/20383699
#SPJ1
Translation =
Someone to explain to me how to solve this operation by steps 4(2-x) <-x+5
Let PC) be the population (in Millions) of a certain city t years after 1990, and suppose that Plt) satisfies the differential equation P = 04P(1) PO) = 5. (a) Find the formula for P(t) P- (Type an ex
The formula for P(t), the population of a certain city t years after 1990, is P(t) = 5 / (1 - 4e^(-0.4t)), where e represents Euler's number.
Explanation:
The given differential equation is dP/dt = 0.4P(1), where P(0) = 5. To solve this differential equation, we can separate the variables and integrate both sides.
1 / P dP = 0.4 dt
Integrating both sides gives:
∫(1 / P) dP = ∫0.4 dt
ln|P| = 0.4t + C
Here, C represents the constant of integration. To find the value of C, we can substitute the initial condition P(0) = 5 into the equation:
ln|5| = 0 + C
C = ln|5|
Therefore, the equation becomes:
ln|P| = 0.4t + ln|5|
Exponentiating both sides yields:
|P| = e^(0.4t + ln|5|)
Since P represents population, we can drop the absolute value sign:
P = e^(0.4t + ln|5|)
Using the property of logarithms (ln(a * b) = ln(a) + ln(b)), we can simplify further:
P = e^(ln(5) + 0.4t)
P = 5e^(0.4t)
Hence, the formula for P(t) is P(t) = 5 / (1 - 4e^(-0.4t)).
Learn more about integrate here:
https://brainly.com/question/29276807
#SPJ11
please give 100% correct
answer and Quickly ( i'll give you like )
Question * Let R be the region in the first quadrant bounded below by the parabola y = x² and above by the line y = 2. Then the value of ff, yx dA is: None of these This option This option 413 This o
The value of the double integral ∫∫R yx dA, where R is the region in the first quadrant bounded below by the parabola y = x² and above by the line y = 2, is 4/3.
To evaluate the given double integral, we need to determine the limits of integration for x and y. The region R is bounded below by the parabola y = x² and above by the line y = 2. Setting these two equations equal to each other, we find x² = 2, which gives us x = ±√2. Since R is in the first quadrant, we only consider the positive value, x = √2.
Now, to evaluate the double integral, we integrate yx with respect to y first and then integrate the result with respect to x over the limits determined earlier. Integrating yx with respect to y gives us (1/2)y²x. Integrating this expression with respect to x from 0 to √2, we obtain (√2/2)y²x.
Plugging in the limits for y (x² to 2), and x (0 to √2), and evaluating the integral, we get the value of the double integral as 4/3.
Therefore, the value of the double integral ∫∫R yx dA is 4/3. Option D: 4/3 is the correct answer.
Learn more about parabola here:
https://brainly.com/question/29267743
#SPJ11
cell culture contains 11 thousand cells, and is growing at a rate of r(t) hour. Find the total cell count after 5 hours. Give your answer accurate to at least 2 decimal places. thousand cells
The value of total cell count after 5 hours is given by 11 + ∫[0,5] r(t) dt.
To find the total cell count after 5 hours, we need to integrate the growth rate function r(t) over the interval [0, 5] and add it to the initial cell count.
Let's assume the growth rate function r(t) is given in thousand cells per hour.
The total cell count after 5 hours can be calculated using the integral:
Total cell count = Initial cell count + ∫[0,5] r(t) dt
Given that the initial cell count is 11 thousand cells, we have:
Total cell count = 11 + ∫[0,5] r(t) dt
Integrating the growth rate function r(t) over the interval [0,5] will give us the additional number of cells that have been grown during that time.
The result will depend on the specific form of the growth rate function r(t). Once you provide the function or the equation describing the growth rate, we can proceed with evaluating the integral and obtaining the total cell count after 5 hours accurate to at least 2 decimal places.
To know more about integral click on below link:
https://brainly.com/question/31059545#
#SPJ11
7, 8, 9 helppp
7. Evaluate [² (92². - 10x+6) dx 8. If y=x√8x²-7, find d STATE all rules used. 9. Find y' where y = 3¹. STATE all rules used. 10. Solve the differential equation: dy = 10xy dx such that y = 70 w
7. The value of the integral ∫(9x² - 10x + 6) dx is 3x³ - 5x² + 6x + C.
8. The derivative of y = x√(8x² - 7) is dy/dx = √(8x² - 7) + 8x³ / √(8x² - 7).
9. T value of y' where y = 3√(x + 1) is y' = 3 / (2√(x + 1)).
7. To evaluate the integral ∫(9x² - 10x + 6) dx, we can use the power rule of integration.
∫(9x² - 10x + 6) dx = (9/3)x³ - (10/2)x² + 6x + C
Simplifying further:
∫(9x² - 10x + 6) dx = 3x³ - 5x² + 6x + C
Therefore, the value of the integral ∫(9x² - 10x + 6) dx is 3x³ - 5x² + 6x + C.
8. To find dy/dx for the function y = x√(8x² - 7), we can use the chain rule and the power rule of differentiation.
Using the chain rule, we differentiate √(8x² - 7) with respect to x:
(d/dx)√(8x² - 7) = (1/2)(8x² - 7)^(-1/2) * (d/dx)(8x² - 7) = (1/2)(8x² - 7)^(-1/2) * (16x)
Differentiating x with respect to x, we get:
(d/dx)x = 1
Now, let's substitute these derivatives back into the equation:
dy/dx = (1)(√(8x² - 7)) + x * (1/2)(8x² - 7)^(-1/2) * (16x)
Simplifying further:
dy/dx = √(8x² - 7) + 8x³ / √(8x² - 7)
Therefore, the derivative of y = x√(8x² - 7) is dy/dx = √(8x² - 7) + 8x³ / √(8x² - 7).
9. To find y' where y = 3√(x + 1), we can use the power rule of differentiation.
Using the power rule, we differentiate √(x + 1) with respect to x:
(d/dx)√(x + 1) = (1/2)(x + 1)^(-1/2) * (d/dx)(x + 1) = (1/2)(x + 1)^(-1/2) * 1 = 1 / (2√(x + 1))
Now, let's substitute these derivatives back into the equation:
y' = 3 * (1 / (2√(x + 1)))
Simplifying further:
y' = 3 / (2√(x + 1))
Therefore, y' where y = 3√(x + 1) is y' = 3 / (2√(x + 1)).
Learn more about "integral ":
https://brainly.com/question/30094386
#SPJ11
Asanda bought a house in January 1990 for R102, 000. How much would he have to sell the house for in December 2008,if inflation over that time averaged 3. 25% compounded annually?
Based on an exponential growth equation or function or annual compounding, Asanda would sell the house in December 2008 for R187,288.59.
What is an exponential growth function?An exponential growth function is an equation that shows the relationship between two variables when there is a constant rate of growth.
In this instance, we can also find the value of the house after 19 years using the future value compounding process.
The cost of the house in January 1990 = R102,000
Average annual inflation rate = 3.25% = 0.0325 (3.25 ÷ 100)
Inflation factor = 1.0325 (1 + 0.0325)
The number of years between January 1990 and December 2008 = 19 years
Let the value of the house in December 2008 = y
Exponential Growth Equation:y = 102,000(1.0325)¹⁹
y = 187,288.589
y = R187,288.59
Learn more about exponential growht equations at https://brainly.com/question/13223520.
#SPJ1
Find the arc length for the curve y = 3x^2 − 1/24 ln x taking p0(1, 3 ) as the starting point.
To find the arc length for the curve y = 3x² − (1/24) ln x with the starting point p0(1, 3), we need to integrate the expression √(1 + (dy/dx)²) with respect to x over the desired interval. The resulting value will give us the arc length of the curve.
To find the arc length, we need to integrate the expression √(1 + (dy/dx)²) with respect to x over the given interval. In this case, the given function is y = 3x²− (1/24) ln x. To compute the derivative dy/dx, we differentiate each term separately. The derivative of 3x² is 6x, and the derivative of (1/24) ln x is (1/24x). Squaring the derivative, we get (6x)² + (1/24x)².
Next, we substitute this expression into the arc length formula:
∫√(1 + (dy/dx)²) dx. Plugging in the squared derivative expression, we have ∫√(1 + (6x)² + (1/24x)²) dx. To evaluate this integral, we need to employ appropriate integration techniques, such as trigonometric substitutions or partial fractions.
By integrating the expression, we obtain the arc length of the curve between the starting point p0(1, 3) and the desired interval. The resulting value represents the distance along the curve between these two points, giving us the arc length for the given curve.
Learn more about derivative here: https://brainly.com/question/29144258
#SPJ11
What two positive real numbers whose product is 86 have the smallest possible sum? The numbers are and (Type exact answers, using radicals as needed.)
the two positive real numbers with the smallest possible sum and a product of 86 are √86 and √86.
The two positive real numbers that have a product of 86 and the smallest possible sum are approximately 9.2736 and 9.2736.Let's assume the two numbers are x and y. We know that the product of the two numbers is 86, so we have the equation xy = 86. To find the smallest sum of x and y, we need to minimize their sum, which is x + y.We can solve for y in terms of x by dividing both sides of the equation xy = 86 by x:
y = 86/x.Now we can express the sum x + y as x + 86/x. To find the minimum value of this sum, we can take the derivative with respect to x and set it equal to zero:
d/dx (x + 86/x) = 1 - 86/x^2 = 0.
Solving this equation, we get x^2 = 86, which gives us x = sqrt(86) ≈ 9.2736. Substituting this value back into the equation y = 86/x, we find y ≈ 9.2736.
Learn more about real numbers here:
https://brainly.com/question/31715634
#SPJ11
the town of hamlet has $3$ people for each horse, $4$ sheep for each cow, and $3$ ducks for each person. which of the following could not possibly be the total number of people, horses, sheep, cows, and ducks in hamlet? 41 47 59 61 66
Answer:
47
Step-by-step explanation:
Given 3 persons per horse, 4 sheep per cow, 3 ducks per person, you want to know if the total number of people, horses, sheep, cows, and ducks can be any of 41, 47, 59, 61, or 66.
RatiosUsing {d, p, h, s, c} for numbers of {ducks, people, horses, sheep, cows}, the given ratios are ...
p : h = 3 : 1s : c = 4 : 1d : p = 3 : 1We can combine the first and last of these to d : p : h = 9 : 3 : 1.
In terms of horses, the total number of horses, people, and ducks will be ...
h(1 + 3 + 9) = 13h
In terms of cows, the total number of sheep and cows will be ...
c(1 + 4) = 5c
Then the total Hamlet population will be (13h +5c).
Not possibleWe need to find the number on the given list that cannot be expressed as this sort of sum.
In the attachment, we do that by subtracting multiples of 13 from the offered choice, and seeing if any remainders are divisible by 5. The cases where subtracting a multiple of 13 gives a multiple of 5 are highlighted.
Only 47 cannot be a total of people, horses, sheep, cows, and ducks.
Based on the above analysis, the numbers that could not possibly be the total number of people, horses, sheep, cows, and ducks in Hamlet are: 41, 47, 59, and 61.
To determine which of the given numbers could not possibly be the total number of people, horses, sheep, cows, and ducks in Hamlet, we need to check if they satisfy the given ratios between these animals and people.
Given ratios:
3 people for each horse
4 sheep for each cow
3 ducks for each person
Let's evaluate each option:
a) 41:
To satisfy the ratios, the number of horses would need to be a multiple of 3. However, 41 is not divisible by 3, so it is not possible.
b) 47:
Again, the number of horses would need to be a multiple of 3 to satisfy the ratios. 47 is not divisible by 3, so it is not possible.
c) 59:
Similarly, 59 is not divisible by 3, so it is not possible.
d) 61:
Once again, 61 is not divisible by 3, so it is not possible.
e) 66:
In this case, the number of horses would be 66 / 3 = 22. If we have 22 horses, we would need 22 * 3 = 66 people, which satisfies the ratio. However, we also need to check the other ratios. If we have 22 horses, we would need 22 * 4 = 88 sheep and 66 * 3 = 198 ducks. The number of cows can be any number since there is no ratio involving cows. Therefore, 66 is possible as the total number.
To know more about total number,
https://brainly.com/question/32472190
#SPJ11