Determine whether the series is absolutely convergent, conditionally convergent, or divergent. 10 1 8 10.) Σ^=1 3 11.) Σ=2 12.) Σπ=1 32n+1 n5n-1 n(Inn) ³ √√n+8 7²-2 n²+1 n+cos n 13.) Σ=1 1

Answers

Answer 1

The series 10 1 8 10.) Σ^=1 3 11.) Σ=2 12.) Σπ=1 32n+1 n5n-1 n(Inn) ³ √√n+8 7²-2 n²+1 n+cos n 13.) Σ=1 1 is divergent.

The given series contains a variety of terms and expressions, making it challenging to provide a simple and direct answer. Upon analysis, we can observe that the terms do not converge to a specific value or approach zero as the series progresses. This lack of convergence indicates that the series diverges.

In more detail, the presence of terms like n^5n-1 and √√n+8 in the series suggests exponential growth, which implies the terms become larger and larger as n increases. Additionally, the presence of n+cosn in the series introduces oscillation, preventing the terms from approaching a fixed value. These characteristics confirm the divergence of the series.

To determine the convergence or divergence of a series, it is important to examine the behavior of its terms and investigate if they approach a specific value or tend to infinity. In this case, the terms exhibit divergent behavior, leading to the conclusion that the given series is divergent.

In summary, the series 10 1 8 10.) Σ^=1 3 11.) Σ=2 12.) Σπ=1 32n+1 n5n-1 n(Inn) ³ √√n+8 7²-2 n²+1 n+cos n 13.) Σ=1 1 is divergent due to the lack of convergence in its terms.

To learn more about Convergence of a series, visit:

https://brainly.com/question/29853820

#SPJ11


Related Questions

Assume the age distribution of US college students is approximately normal with a mean of 22.48 and a standard deviation of σ=4.74 years.
a. Use the 68-95-99.7 Rule to estimate the proportion of ages that lie between 13 & 31.96 years old.
b. Use the Standard Normal Table (or TI-graphing calculator) to compute (to four-decimal accuracy) the proportion of ages that lie between 13 & 31.96 years old.

Answers

Using the 68-95-99.7 Rule, we can estimate that approximately 95% of the ages of US college students lie between 13 and 31.96 years old which is 0.9515 for proportion.

In a normal distribution, typically 68% of the data falls within one standard deviation of the mean, roughly 95% falls within two standard deviations, and nearly 99.7% falls within three standard deviations, according to the 68-95-99.7 Rule, also known as the empirical rule.

In this instance, the standard deviation is 4.74 years, with the mean age of US college students being 22.48. We must establish the number of standard deviations that each result deviates from the mean in order to estimate the proportion of ages between 13 and 31.96 years old.

The difference between 13 and the mean is calculated as follows: (13 - 22.48) / 4.74 = -1.99 standard deviations, and (31.96 - 22.48) / 4.74 = 2.00 standard deviations.

We may calculate that the proportion of people between the ages of 13 and 31.96 is roughly 0.95 because the rule specifies that roughly 95% of the data falls within two standard deviations.

We can use a graphing calculator or the Standard Normal Table to get a more accurate calculation. We may find the proportion by locating the z-scores between 13 and 31.96 and then looking up the values in the table. The ratio in this instance is roughly 0.9515.

Learn more about proportion here:

https://brainly.com/question/31548894


#SPJ11

E.7. For which of the following integrals is u-substitution appropriate? Possible Answers 1 1. S -dx 2x + 1 6 1 S · Sæe=², 1 2. 3. 4. 5. x + 1 reda dx sin x cos x dx 0 3x² + 1 S dx X Option 1 Opti

Answers

Out of the given options, u-substitution is appropriate for the integrals involving sin(x), cos(x), and x^2 + 1.

The u-substitution method is commonly used to simplify integrals by substituting a new variable, u, which helps to transform the integral into a simpler form. This method is particularly useful when the integrand contains a function and its derivative, or when it can be rewritten in terms of a basic function.

1. ∫sin(x)cos(x)dx: This integral involves the product of sin(x) and cos(x), which can be simplified using u-substitution. Let u = sin(x), then du = cos(x)dx, and the integral becomes ∫udu, which is straightforward to evaluate.

2. ∫(x^2 + 1)dx: Here, the integral involves a polynomial function, x^2 + 1, which is a basic function. Although u-substitution is not necessary for this integral, it can still be used to simplify the evaluation if desired. Let u = x^2 + 1, then du = 2xdx, and the integral becomes ∫du/2x.

3. ∫e^(2x)dx: This integral does not require u-substitution. It is a straightforward integral that can be solved using basic integration techniques.

4. ∫(2x + 1)dx: This integral involves a linear function, 2x + 1, which is a basic function. It does not require u-substitution and can be directly integrated.

5. ∫dx/x: This integral involves the natural logarithm function, ln(x), which does not have a simple antiderivative. It requires a different integration technique, such as logarithmic integration or applying specific integration rules.

In summary, u-substitution is appropriate for integrals involving sin(x), cos(x), and x^2 + 1, while other integrals can be solved using different integration techniques.

To learn more about u-substitution : brainly.com/question/32150391

#SPJ11

< Question 14 of 16 > Find a formula a, for the n-th term of the following sequence. Assume the series begins at n = 1. 1 11 1' 8'27' (Use symbolic notation and fractions where needed.) an = Find a fo

Answers

The formula for the nth term of the given sequence is an = (n^(n-1)) * (n/2)^n.

To find a formula for the nth term of the given sequence, we can observe the pattern of the terms.

The given sequence is: 1, 11, 1', 8', 27', ...

From the pattern, we can notice that each term is obtained by raising a number to the power of n, where n is the position of the term in the sequence.

Let's analyze each term:

1st term: 1 = 1^1

2nd term: 11 = 1^2 * 11

3rd term: 1' = 1^3 * 1'

4th term: 8' = 2^4 * 1'

5th term: 27' = 3^5 * 1'

We can see that the nth term can be obtained by raising n to the power of n and multiplying it by a constant, which is 1 for odd terms and the value of n/2 for even terms.

Based on this pattern, we can write the formula for the nth term (an) as follows: an = (n^(n-1)) * (n/2)^n, where n is the position of the term in the sequence.

Therefore, the formula for the nth term of the given sequence is an = (n^(n-1)) * (n/2)^n.

To learn more about “term” refer to the https://brainly.com/question/7882626

#SPJ11







Find the the centroid of the solid formed if the area in the 1st quadrant of the curve y² = 44, the y-axis and the line ? 9-6-0 is revolved about the line y-6=0.

Answers

The position of the centroid of the solid is[tex]({\frac{4\pi }{3} ,6)[/tex].

What is  the area of a centroid?

The area of a centroid refers to the region or shape for which the centroid is being calculated. The centroid is the geometric center or average position of all the points in that region.

  The area of a centroid is typically denoted by the symbol A. It represents the total extent or size of the region for which the centroid is being determined.

To find the centroid of the solid formed by revolving the area in the first quadrant of the curve [tex]y^2=44[/tex], the y-axis, and the line y=9−6x about the line y−6=0, we can use the method of cylindrical shells.

First, let's determine the limits of integration. The curve [tex]y^2=44[/tex] intersects the y-axis at[tex]y=\sqrt{44}[/tex]​ and y=[tex]\sqrt{-44}[/tex]​. The line y=9−6x intersects the y-axis at y=9. We'll consider the region between y=0 and y=9.

The volume of the solid can be obtained by integrating the area of each cylindrical shell. The general formula for the volume of a cylindrical shell is:

[tex]V=2\pi \int\limits^b_ar(x)h(x)dx[/tex]

where r(x) represents the distance from the axis of rotation to the shell, and h(x) represents the height of the shell.

In this case, the distance from the axis of rotation (line y−6=0) to the shell is 6−y, and the height of the shell is [tex]2\sqrt{44} =4\sqrt{11}[/tex]​ (as the given curve is symmetric about the y-axis).

So, the volume of the solid is:

[tex]V=2\pi \int\limits^9_0(6-y)(4\sqrt{11})dy[/tex]

Simplifying the integral:

[tex]V=8\pi \sqrt{11}\int\limits^9_0(6-y)dy[/tex]

[tex]V=8\pi \sqrt{11}[6y-\frac{y^{2} }{2}][/tex] from 0 to 9.

[tex]V=8\pi \sqrt{11}(54-\frac{81}{2})\\V=\frac{108\pi \sqrt{11}}{2}[/tex]

To find the centroid, we need to divide the volume by the area. The area of the region can be obtained  between y=0 andy=9:

[tex]A=\int\limits^9_0 {\sqrt{44} } \, dy\\A= {\sqrt{44} }.y \\A=3\sqrt{11}.9\\A=27\sqrt{11}[/tex]

So, the centroid is given by:

[tex]C=\frac{V}{A} \\C=\frac{\frac{108\pi\sqrt{11} }{2} }{27\sqrt{11} } \\C=\frac{4\pi }{3}[/tex]

Therefore, the centroid of the solid formed is located at [tex]({\frac{4\pi }{3} ,6)[/tex].

To learn more about the area of a centroid  from the given link

brainly.com/question/32114452

#SPJ4

Which one the following integrals gives the length of the curve TO f(x) = In(cosx) from x=0 to x = ? 3 Hint: Recall that 1+tan²(x) = sec²(x). O π/3 sec(x) dx π/3 TT/3 TT/3 O 1+sin(x) dx √1+sec²

Answers

The integral that gives the length of the curve f(x) = ln(cos(x)) is

[tex]\(\int_{0}^{\pi/3} \sec(x) dx\)[/tex].

Arc length is the distance between two points along a section of a curve.

To find the length of the curve represented by the function f(x) = ln(cos(x)) from x = 0 to x = π/3, we can use the arc length formula for a curve given by y = f(x):

[tex]\[L = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx\][/tex]

In this case, we need to find dy/dx first by differentiating f(x):

[tex]\(\frac{dy}{dx} = \frac{d}{dx} \ln(\cos(x))\)[/tex]

Using the chain rule, we have:

dy/dx= - tan x

Now, substituting this value back into the arc length formula, we get the integral as:

[tex]\[L = \int_{0}^{\pi/3} \sqrt{1 + (-\tan(x))^2} dx\][/tex]

Simplifying the expression inside the square root:

[tex]\[L = \int_{0}^{\pi/3} \sqrt{1 + \tan^2(x)} dx\][/tex]

Using the trigonometric identity 1 + tan²(x) = sec²(x), we have:

[tex]\[L = \int_{0}^{\pi/3} \sqrt{\sec^2(x)} dx\][/tex]

Simplifying further:

[tex]\[L = \int_{0}^{\pi/3} \sec(x) dx\][/tex].

Learn more about integral:

https://brainly.com/question/30094386

#SPJ11

Be C a smooth curve pieces in three dimensional space that begins at the point t and ends in B + Be F = Pi + Qj + Rk A vector, field whose comparents are continuous and which has a potential f in a region that contains the curve. The SF. dr = f(B) - F(A) ( Choose the answers that comesponds •The teorem of divergence . It has no name because the theorem is false Stoke's theorem 7 . The fundamental theorem of curviline integrals Lagrange's Multiplier Theorem o F= If e 6 Green's theorem Clairaut's theorem

Answers

The theorem that corresponds to the given scenario is the Fundamental Theorem of Line Integrals.

The Fundamental Theorem of Line Integrals states that if F is a vector field with a continuous first derivative in a region containing a smooth curve C parameterized by r(t), where t ranges from a to b, and if F is the gradient of a scalar function f, then the line integral of F over C is equal to the difference of the values of f at the endpoints A and B:

∫[C] F · dr = f(B) - f(A)

In the given scenario, it is stated that F = Pi + Qj + Rk is a vector field with continuous components and has a potential f in a region containing the curve C. Therefore, the line integral of F over C, denoted as ∫[C] F · dr, is equal to f(B) - f(A).

Hence, the theorem that corresponds to the given scenario is the Fundamental Theorem of Line Integrals.

To know more about fundamental theorem refer here:

https://brainly.com/question/29283658?#

#SPJ11

5. Evaluate the following integrals: a) ſ(cos’x)dx b) ſ (tanº x)(sec"" x)dx 1 c) S x? 181 dx d) x-2 -dx x² + 5x+6° 5 18d2 3.2 +2V e)

Answers

a)  the integral of cos^2 x is (1/2)(x + (1/2)sin(2x)) + C.

a) ∫(cos^2 x) dx:

We can use the identity cos^2 x = (1 + cos(2x))/2 to simplify the integral.

∫(cos^2 x) dx = ∫((1 + cos(2x))/2) dx

              = (1/2) ∫(1 + cos(2x)) dx

              = (1/2)(x + (1/2)sin(2x)) + C

Therefore, the integral of cos^2 x is (1/2)(x + (1/2)sin(2x)) + C.

b) ∫(tan(x)sec(x)) dx:

We can rewrite tan(x)sec(x) as sin(x)/cos(x) * 1/cos(x).

∫(tan(x)sec(x)) dx = ∫(sin(x)/cos^2(x)) dx

Using the substitution u = cos(x), du = -sin(x) dx, we can simplify the integral further:

∫(sin(x)/cos^2(x)) dx = -∫(1/u^2) du

                     = -(1/u) + C

                     = -1/cos(x) + C

Therefore, the integral of tan(x)sec(x) is -1/cos(x) + C.

c) ∫(x√(x^2 + 1)) dx:

We can use the substitution u = x^2 + 1, du = 2x dx, to simplify the integral:

∫(x√(x^2 + 1)) dx = (1/2) ∫(2x√(x^2 + 1)) dx

                  = (1/2) ∫√u du

                  = (1/2) * (2/3) u^(3/2) + C

                  = (1/3)(x^2 + 1)^(3/2) + C

Therefore, the integral of x√(x^2 + 1) is (1/3)(x^2 + 1)^(3/2) + C.

d) ∫(x^2 - 2)/(x^2 + 5x + 6) dx:

We can factor the denominator:

x^2 + 5x + 6 = (x + 2)(x + 3)

Using partial fraction decomposition, we can rewrite the integral:

∫(x^2 - 2)/(x^2 + 5x + 6) dx = ∫(A/(x + 2) + B/(x + 3)) dx

Multiplying through by the common denominator (x + 2)(x + 3), we have:

x^2 - 2 = A(x + 3) + B(x + 2)

Expanding and equating coefficients:

x^2 - 2 = (A + B) x + (3A + 2B)

Comparing coefficients:

A + B = 0    (coefficient of x)

3A + 2B = -2 (constant term)

Solving this system of equations, we find A = -2/5 and B = 2/5.

Substituting back into the integral:

∫(x^2 - 2)/(x^2 + 5x + 6) dx = ∫(-2/5)/(x + 2) + (2/5)/(x + 3) dx

                            = (-2/5)ln|x + 2| + (2/5)ln|x + 3|

to know more about integral visit:

brainly.com/question/31059545

#SPJ11

Solve for the input that corresponds to the given output value. (Round answers to three decimal places when approp though the question may be completed without the use of technology, the authors intend for you to complete the act course so that you become familiar with the basic functions of that technology.) r(x) = 7 In(1.2)(1.2); r(x) = 9.3, r(x) = 20 r(x) = 9.3 X = r(x) = 20 x=

Answers

The solutions for x in each case are as follows: r(x) = 7: x ≈ ±1.000; r(x) = 9.3: x ≈ ±1.153 and r(x) = 20: x ≈ ±1.693.

To solve for the input values that correspond to the given output values, we need to set up the equations and solve for the variable x.

r(x) = 7 * ln(1.2)^2

To find the value of x that corresponds to r(x) = 7, we set up the equation:

7 = 7 * ln(1.2)^2

Dividing both sides of the equation by 7, we have:

1 = ln(1.2)^2

Taking the square root of both sides, we get:

ln(1.2) = ±sqrt(1)

ln(1.2) ≈ ±1

The natural logarithm of a positive number is always positive, so we consider the positive value:

ln(1.2) ≈ 1

r(x) = 9.3

To find the value of x that corresponds to r(x) = 9.3, we have:

9.3 = 7 * ln(1.2)^2

Dividing both sides of the equation by 7, we get:

1.328571 ≈ ln(1.2)^2

Taking the square root of both sides, we have:

ln(1.2) ≈ ±sqrt(1.328571)

ln(1.2) ≈ ±1.153272

r(x) = 20

To find the value of x that corresponds to r(x) = 20, we set up the equation:

20 = 7 * ln(1.2)^2

Dividing both sides of the equation by 7, we get:

2.857143 ≈ ln(1.2)^2

Taking the square root of both sides, we have:

ln(1.2) ≈ ±sqrt(2.857143)

ln(1.2) ≈ ±1.692862

Therefore, the solutions for x in each case are as follows:

r(x) = 7: x ≈ ±1.000

r(x) = 9.3: x ≈ ±1.153

r(x) = 20: x ≈ ±1.693

Remember to round the answers to three decimal places when appropriate.

To learn more about  natural logarithm visit:

brainly.com/question/25644059

#SPJ11

please just the wrong parts
Consider the following functions. (a) Find (f + g)(x). f(x) = √√81 - x², g(x)=√x+2 (f+g)(x) = √81-x² +√√√x+2 State the domain of the function. (Enter your answer using interval notatio

Answers

The domain of the function is the intersection of the domains of the individual functions, which is -9 ≤ x ≤ 9.

To find the sum (f+g)(x) of the functions f(x) and g(x), we simply add the expressions for f(x) and g(x). In this case, (f+g)(x) = √(√81 - x²) + √(x+2).

To determine the domain of the function, we need to consider any restrictions on the values of x that would make the expression undefined. In the case of square roots, the radicand (the expression under the square root) must be non-negative.

For the first square root, √(√81 - x²), the radicand √81 - x² must be non-negative. This implies that 81 - x² ≥ 0, which leads to -9 ≤ x ≤ 9.

For the second square root, √(x+2), the radicand x+2 must also be non-negative. This implies that x+2 ≥ 0, which leads to x ≥ -2.

Learn more about intersection here:

https://brainly.com/question/12089275

#SPJ11

Amy earns $7.97/hr and works 24 hours each week. She gives her parents $200 a month for room and board.

Answers

The amount (net earnings) that Amy will have after giving her parents $200 a month for room and board is $565.12.

How the amount is determined:

The difference (net earnings) between Amy's monthly earnings and the amount she spends on her parents shows the amount that Amy will have.

The difference is the result of a subtraction operation, which is one of the four basic mathematical operations.

The hourly rate that Amy earns = $7.97

The number of hours per week that Amy works = 24 hours

4 weeks = 1 month

The monthly earnings = $765.12 ($7.97 x 24 x 4)

Amy's monthly expenses on parents' rooom and board = $200

The net earnings (ignoring taxes and other lawful deductions) = $565.12 ($765.12 - $200)

Learn more about net earnings at https://brainly.com/question/30150590.

#SPJ1

Question Completion:

How much is left for her at the end of the month, ignoring taxes and other lawful deductions?

in a right triangle shaped house the roof is 51 feet long and the base of the is 29 feet across caculate the the height of the house

Answers

The height of the right triangle-shaped house is approximately 41.98 feet

calculated using the Pythagorean theorem with a roof length of 51 feet and a base length of 29 feet.

The height of the right triangle-shaped house can be calculated using the Pythagorean theorem, given the length of the roof (hypotenuse) and the base of the triangle. The height can be determined by finding the square root of the difference between the square of the roof length and the square of the base length.

To calculate the height, we can use the formula:

height = √[tex](roof length^2 - base length^2[/tex])

Plugging in the values, with the roof length of 51 feet and the base length of 29 feet, we can calculate the height as follows:

height = √[tex](51^2 - 29^2)[/tex]

= √(2601 - 841)

= √1760

≈ 41.98 feet

Learn more about Pythagorean theorem here:

https://brainly.com/question/14930619

#SPJ11

Re-write using either a sum/ difference, double-angle, half-angle, or power-reducing formula:
a. sin 18y cos 2v -cos 18ysin2y =
b. 2cos^2x 30x - 10 =

Answers

a. sin 18y cos 2v - cos 18y sin 2y can be rewritten as sin 18y cos 2v - 2cos 18y sin y cos y.

Using the double-angle formula for sine (sin 2θ = 2sinθcosθ) and the sum formula for cosine (cos(θ + φ) = cosθcosφ - sinθsinφ), we can rewrite the expression as follows:

sin 18y cos 2v - cos 18y sin 2y = sin 18y cos 2v - cos 18y (2sin y cos y)

= sin 18y cos 2v - cos 18y (sin 2y)

= sin 18y cos 2v - cos 18y (sin y cos y + cos y sin y)

= sin 18y cos 2v - cos 18y (2sin y cos y)

= sin 18y cos 2v - 2cos 18y sin y cos y

b. 2cos^2x 30x - 10 can be simplified to cos 60x - 11.

Using the power-reducing formula for cosine (cos^2θ = (1 + cos 2θ)/2), we can rewrite the expression as follows:

2cos^2x 30x - 10 = 2(cos^2(30x) - 1) - 10

= 2((1 + cos 2(30x))/2 - 1) - 10

= 2((1 + cos 60x)/2 - 1) - 10

= (1 + cos 60x) - 2 - 10

= 1 + cos 60x - 12

= cos 60x - 11

LEARN MORE ABOUT double-angle formula here:  brainly.com/question/30402422

#SPJ11

please answer quickly
Solve the initial value problem for r as a vector function of t Differential equation: -=-18k dr Initial conditions: r(0)=30k and = 6i +6j dtt-0 (=i+Di+k

Answers

The solution to the initial value problem for the vector function r(t) is:

r(t) = -9kt² + 30k, where k is a constant.

This solution satisfies the given differential equation and initial conditions.

To solve the initial value problem for the vector function r(t), we are given the following differential equation and initial conditions:

Differential equation: d²r/dt² = -18k

Initial conditions: r(0) = 30k and dr/dt(0) = 6i + 6j + Di + k

To solve this, we will integrate the given differential equation twice and apply the initial conditions.

First integration:

Integrating -18k with respect to t gives us: dr/dt = -18kt + C1, where C1 is the constant of integration.

Second integration:

Integrating dr/dt with respect to t gives us: r(t) = -9kt² + C1t + C2, where C2 is the constant of integration.

Now, applying the initial conditions:

Given r(0) = 30k, we substitute t = 0 into the equation: r(0) = -9(0)² + C1(0) + C2 = C2 = 30k.

Therefore, C2 = 30k.

Next, given dr/dt(0) = 6i + 6j + Di + k, we substitute t = 0 into the equation: dr/dt(0) = -18(0) + C1 = C1 = 0.

Therefore, C1 = 0.

Substituting these values of C1 and C2 into the second integration equation, we have:

r(t) = -9kt² + 30k.

So, the solution to the initial value problem is:

r(t) = -9kt² + 30k, where k is a constant.

To learn more about initial value problem visit : https://brainly.com/question/31041139

#SPJ11

Consider the function f(x)= (x+5)^2-25/x if x is not equal to
0
f(x)=7 if x =0
first compute \ds limf(x)
x->0
and then find if f(x) is continuous at x=0. Explain

Answers

The limit of f(x) as x approaches 0 is undefined. The function f(x) is not continuous at x=0.

Here are the calculations for the given problem:

Given:

f(x) = (x+5)² - 25/x if x ≠ 0

f(x) = 7 if x = 0

1. To compute the limit of f(x) as x approaches 0:

Left-hand limit:

lim┬(x→0-)⁡((x+5)² - 25)/x

Substituting x = -ε, where ε approaches 0:

lim┬(ε→0+)⁡((-ε+5)² - 25)/(-ε)

= lim┬(ε→0+)⁡(-10ε + 25)/(-ε)

= ∞ (approaches infinity)

Right-hand limit:

lim┬(x→0+)⁡((x+5)² - 25)/x

Substituting x = ε, where ε approaches 0:

lim┬(ε→0+)⁡((ε+5)² - 25)/(ε)

= lim┬(ε→0+)⁡(10ε + 25)/(ε)

= ∞ (approaches infinity)

Since the left-hand limit and right-hand limit are both ∞, the limit of f(x) as x approaches 0 is undefined.

2. To determine if f(x) is continuous at x = 0:

Since the limit of f(x) as x approaches 0 is undefined, f(x) is not continuous at x = 0.

learn more about Continuous here:

https://brainly.com/question/31523914

#SPJ4

What is assigned to the variable result given the statement below with the following assumptions: x = 10, y = 7, and x, result, and y are all int variables. result = x > y; 10 x > Y 7 0 1

Answers

Based on the statement "result = x > y;", with the given assumptions x = 10, y = 7, and all variables being of type int, the variable "result" will be assigned the value of 1.

In this case, the expression "x > y" evaluates to true because 10 is indeed greater than 7. In C++ and many other programming languages, a true condition is represented by the value 1 when assigned to an int variable. Therefore, "result" will be assigned the value 1 to indicate that the condition is true.

what is expression ?

An expression is a combination of numbers, variables, operators, and/or functions that represents a value or a computation. It does not contain an equality or inequality sign and does not make a statement or claim. Expressions can be simple or complex, involving arithmetic operations, algebraic manipulations, or logical operations.

to know more about expression visit:

brainly.com/question/28172855

#SPJ11

Let D be solid hemisphere x2 + y2 + z2 <1, z>0. The density function is d = z. We will tell you that the mass is m = a, = 7/4. Use SPHERICAL COORDINATES and find the Z-coordinate of the center of mass. Hint: You need Mxy. Z =??? pể sin (0) dp do do 1.5 p: 0 →??? -1.5 0:0 ??? 0: 0 → 21. 15 -1.5 -1.5

Answers

The Z-coordinate of the center of mass for the solid hemisphere D is (4zπ²) / 35.

How to find the center of mass?

To find the Z-coordinate of the center of mass for the solid hemisphere D, we'll need to calculate the integral involving the density function and the Z-coordinate. Here's how you can solve it using spherical coordinates.

The density function is given as d = z, and the mass is given as m = a = 7/4. The integral for the Z-coordinate of the center of mass can be written as:

Z = (1/m) ∫∫∫ z * ρ² * sin(φ) dρ dφ dθ

In spherical coordinates, the hemisphere D can be defined as follows:

ρ: 0 to 1

φ: 0 to π/2

θ: 0 to 2π

Let's calculate the integral step by step:

Step 1: Calculate the limits of integration for each variable.

ρ: 0 to 1

φ: 0 to π/2

θ: 0 to 2π

Step 2: Set up the integral.

Z = (1/m) ∫∫∫ z * ρ² * sin(φ) dρ dφ dθ

Step 3: Evaluate the integral.

Z = (1/m) ∫∫∫ z * ρ² * sin(φ) dρ dφ dθ

= (1/m) ∫[0 to 2π] ∫[0 to π/2] ∫[0 to 1] (z * ρ² * sin(φ)) ρ² * sin(φ) dρ dφ dθ

= (1/m) ∫[0 to 2π] ∫[0 to π/2] ∫[0 to 1] (z * ρ⁴ * sin²(φ)) dρ dφ dθ

Step 4: Simplify the integral.

Z = (1/m) ∫[0 to 2π] ∫[0 to π/2] ∫[0 to 1] (z * ρ⁴ * sin²(φ)) dρ dφ dθ

= (1/m) ∫[0 to 2π] ∫[0 to π/2] [(sin²(φ) / 5) * z] dφ dθ

Step 5: Evaluate the remaining integrals.

Z = (1/m) ∫[0 to 2π] ∫[0 to π/2] [(sin²(φ) / 5) * z] dφ dθ

= (1/m) ∫[0 to 2π] [(1/5) * z * π/2] dθ

= (1/m) * (1/5) * z * π/2 * [θ] [0 to 2π]

= (1/m) * (1/5) * z * π/2 * (2π - 0)

= (1/m) * (1/5) * z * π²

Since the mass is given as m = a = 7/4, we can substitute it into the equation:

Z = (1/(7/4)) * (1/5) * z * π²

= (4/7) * (1/5) * z * π²

= (4zπ²) / 35

Therefore, the Z-coordinate of the center of mass for the solid hemisphere D is (4zπ²) / 35.

Learn more about mass

brainly.com/question/11954533

#SPJ11

Let f(x) = 2x2 a) Find f(x + h): b) Find f(x+h) - f(2): C) Find f(x+h)-f(x). (x). h d) Find f'(x):

Answers

If f(x)=2x², then the values of the required functions are as follows:

a) f(x + h) = 2(x + h)²

b) f(x + h) - f(2) = 2[(x + h)² - 2²]

c) f(x + h) - f(x) = 2[(x + h)² - x²]

d) f'(x) = 4x

a) To find f(x + h), we substitute (x + h) into the function f(x):

f(x + h) = 2(x + h)²

Expanding and simplifying:

f(x + h) = 2(x² + 2xh + h²)

b) To find f(x + h) - f(x), we subtract the function f(x) from f(x + h):

f(x + h) - f(x) = [2(x + h)²] - [2x²]

Expanding and simplifying:

f(x + h) - f(x) = 2x² + 4xh + 2h² - 2x²

The x² terms cancel out, leaving:

f(x + h) - f(x) = 4xh + 2h²

c) To find f(x + h) - f(x)/h, we divide the expression from part b by h:

[f(x + h) - f(x)]/h = (4xh + 2h²)/h

Simplifying:

[f(x + h) - f(x)]/h = 4x + 2h

d) To find the derivative f'(x), we take the limit of the expression from part c as h approaches 0:

lim(h->0) [f(x + h) - f(x)]/h = lim(h->0) (4x + 2h)

As h approaches 0, the term 2h goes to 0, and we are left with:

f'(x) = 4x

So, the derivative of f(x) is f'(x) = 4x.

Learn more about functions:

https://brainly.com/question/11624077

#SPJ11

8. The prescriber has ordered heparin 20,000 units in 1,000 mL DsW IV over 24 hours. (a) How many units/hour will your patient receive? (b) At how many mL/h will you run the IV pump?

Answers

(a) The patient will receive 833 units/hour. +

(b) The IV pump will be set at 41.67 mL/hour.

To the number of units per hour, divide the total number of units (20,000) by the total time in hours (24). Thus, 20,000 units / 24 hours = 833 units/hour.

To determine the mL/hour rate for the IV pump, divide the total volume (1,000 mL) by the total time in hours (24). Hence, 1,000 mL / 24 hours = 41.67 mL/hour.

These calculations assume a continuous infusion rate over the entire 24-hour period. Always consult with a healthcare professional and follow their instructions when administering medications.

Learn more about administering  here:

 https://brainly.com/question/28016648

#SPJ11

Consider the third-order linear homogeneous ordinary differential equa- tion with variable coefficients dy dạy (2-x) + (2x - 3) +y=0, < 2. d.x2 dc dy d.r3 First, given that y(x) = er is a soluti"

Answers

The third-order linear homogeneous ordinary differential equation with variable coefficients is represented as (2-x)(d^3y/dx^3) + (2x - 3)(d^2y/dx^2) + (dy/dx) = 0.

We are given the differential equation (2-x)(d^3y/dx^3) + (2x - 3)(d^2y/dx^2) + (dy/dx) = 0. Let's substitute y(x) = e^r into the equation and find the relationship between r and the coefficients.

Differentiating y(x) = e^r with respect to x, we have dy/dx = (dy/dr)(dr/dx) = (d^2y/dr^2)(dr/dx) = r'(dy/dr)e^r.

Now, let's differentiate dy/dx = r'(dy/dr)e^r with respect to x:

(d^2y/dx^2) = (d/dr)(r'(dy/dr)e^r)(dr/dx) = (d^2y/dr^2)(r')^2e^r + r''(dy/dr)e^r.

Further differentiation gives:

(d^3y/dx^3) = (d/dr)((d^2y/dr^2)(r')^2e^r + r''(dy/dr)e^r)(dr/dx)

= (d^3y/dr^3)(r')^3e^r + 3r'(d^2y/dr^2)r''e^r + r'''(dy/dr)e^r.

Substituting these expressions back into the original differential equation, we can equate the coefficients of the terms involving e^r to zero and solve for r. This will give us the values of r that satisfy the differential equation.

Please note that the provided differential equation and the initial condition mentioned in the question are incomplete.

Learn more about differential equation here:

https://brainly.com/question/2273154

#SPJ11

Given f(x) = (-3x - 3)(2x - 1), find the (x, y) coordinate on the graph where the slope of the tangent line is - 7. - Answer 5 Points

Answers

To find the (x, y) coordinate on the graph of f(x) = (-3x - 3)(2x - 1) where the slope of the tangent line is -7, we need to determine the x-value that satisfies the given condition and then find the corresponding y-value by evaluating f(x) at that x-value.

The slope of the tangent line at a point on the graph of a function represents the instantaneous rate of change of the function at that point. To find the (x, y) coordinate where the slope of the tangent line is -7, we need to find the x-value that satisfies this condition.

First, we find the derivative of f(x) = (-3x - 3)(2x - 1) using the product rule. The derivative is f'(x) = -12x + 9.

Next, we set the derivative equal to -7 and solve for x:

-12x + 9 = -7.

Simplifying the equation, we get:

-12x = -16.

Dividing both sides by -12, we find:

x = 4/3.

Now that we have the x-value, we can find the corresponding y-value by evaluating f(x) at x = 4/3:

f(4/3) = (-3(4/3) - 3)(2(4/3) - 1).

Simplifying the expression, we get:

f(4/3) = (-4 - 3)(8/3 - 1) = (-7)(5/3) = -35/3.

Therefore, the (x, y) coordinate on the graph of f(x) where the slope of the tangent line is -7 is (4/3, -35/3).

In conclusion, the point on the graph of f(x) = (-3x - 3)(2x - 1) where the slope of the tangent line is -7 is (4/3, -35/3).

Learn more about slope here:

https://brainly.com/question/32393818

#SPJ11

If n = 290 and p (p-hat) = 0,85, find the margin of error at a 99% confidence level. __________ Round to 4 places. z-scores may be rounded to 3 places or exact using technology.

Answers

The margin of error at a 99% confidence level, given n = 290 and p-hat = 0.85, is approximately 0.0361.

To calculate the margin of error, we need to find the critical z-score for a 99% confidence level. The formula to calculate the margin of error is:

Margin of Error = z * sqrt((p-hat * (1 - p-hat)) / n)

Here, n represents the sample size, p-hat is the sample proportion, and z is the critical z-score.

First, we find the critical z-score for a 99% confidence level. The critical z-score can be found using a standard normal distribution table or a statistical calculator. For a 99% confidence level, the critical z-score is approximately 2.576.

Next, we substitute the values into the formula:

Margin of Error = 2.576 * sqrt((0.85 * (1 - 0.85)) / 290)

Calculating the expression inside the square root:

0.85 * (1 - 0.85) = 0.1275

Now, substituting this value and the other values into the formula:

Margin of Error = 2.576 * sqrt(0.1275 / 290) ≈ 0.0361

Therefore, the margin of error at a 99% confidence level is approximately 0.0361 when n = 290 and p-hat = 0.85.

Learn more about confidence level here:

https://brainly.com/question/22851322

#SPJ11

"
Find the change in cost for the given marginal. Assume that the number of units x increases by 3 from the specified value of x. (Round your answer to twe decimal places.) Marginal Number of Units, dc/dx = 22000/x2 x= 12 "

Answers

The problem asks us to find the change in cost given the marginal cost function and an increase in the number of units. The marginal cost function is given as dc/dx = 22000/x^2, and we need to calculate the change in cost when the number of units increases by 3 from x = 12.

To find the change in cost, we need to integrate the marginal cost function with respect to x. Since the marginal cost function is given as dc/dx, integrating it will give us the total cost function, C(x), up to a constant of integration.

Integrating dc/dx = 22000/x^2 with respect to x, we have:

[tex]\int\limits (dc/dx) dx = \int\limits(22000/x^2) dx.[/tex]

Integrating the right side of the equation gives us:[tex]C(x) = -22000/x + C,[/tex]

where C is the constant of integration.

Now, we can find the change in cost when the number of units increases by 3. Let's denote the initial number of units as x1 and the final number of units as x2. The change in cost, ΔC, is given by:[tex]ΔC = C(x2) - C(x1).[/tex]

Substituting the expressions for C(x), we have:[tex]ΔC = (-22000/x2 + C) - (-22000/x1 + C).[/tex]

Simplifying, we get:[tex]ΔC = -22000/x2 + 22000/x1.[/tex]

Now, we can plug in the values x1 = 12 (initial number of units) and x2 = 15 (final number of units) to calculate the change in cost, ΔC, and round the answer to two decimal places.

Learn more about cost here;

https://brainly.com/question/1153322

#SPJ11

For what value of the constant c is the function f defined below continuous on (-00,00)? f(x) = {2-c if y € (-0,2) y cy+7 if ye 2,00) - С

Answers

The function f is continuous on the interval (-∞, ∞) if c = 2. This is because this value of c ensures that the limits of f as x approaches 2 and as x approaches -0 from the left are equal to the function values at those points.

To determine the value of the constant c that makes the function f continuous on the interval (-∞, ∞), we need to consider the limit of f as x approaches 2 and as x approaches -0 from the left.

First, let's consider the limit of f as x approaches 2 from the left. This means that y is approaching 2 from values less than 2. In this case, the function takes the form cy + 7, and we need to ensure that this expression approaches the same value as f(2), which is 2-c. Therefore, we need to solve for c such that:

lim y→2- (cy + 7) = 2 - c

Using the limit laws, we can simplify this expression:

lim y→2- cy + lim y→2- 7 = 2 - c

Since lim y→2- cy = 2-c, we can substitute this into the equation:

2-c + lim y→2- 7 = 2 - c

lim y→2- 7 = 0

Therefore, we need to choose c such that:

2 - c = 0

c = 2

Next, let's consider the limit of f as x approaches -0 from the left. This means that y is approaching -0 from values greater than -0. In this case, the function takes the form 2 - c, and we need to ensure that this expression approaches the same value as f(-0), which is 2 - c. Since the limit of f(x) as x approaches -0 from the left is equal to f(-0), the function is already continuous at this point, and we do not need to consider any additional values of c.

Learn more about function here:

brainly.com/question/31062578

#SPJ11

Evaluate the line integral ſvø• dr for the following function and oriented curve C (a) using a parametric description of C and evaluating the integral directly, and (b) с using the Fundamental Theorem for line integrals. x² + y² + z² Q(x,y,z) = C: r(t) = cost, sint, 2 1111 for sts 6 Sve•dr=[. Using either method, с (Type an exact answer.)

Answers

The line integral ſvø• dr for the function [tex]Q(x, y, z) = x^2 + y^2 + z^2[/tex] along the oriented curve C can be evaluated using both a parametric description of C and by applying the Fundamental Theorem for line integrals.

(a) To evaluate the line integral using a parametric description, we substitute the parametric equations of the curve C, r(t) = (cost, sint, 2t), into the function Q(x, y, z). We have [tex]Q(r(t)) = (cost)^2 + (sint)^2 + (2t)^2 = 1 + 4t^2[/tex]. Next, we calculate the derivative of r(t) with respect to t, which gives dr/dt = (-sint, cost, 2). Taking the dot product of Q(r(t)) and dr/dt, we get [tex](-sint)(-sint) + (cost)(cost) + (2t)(2) = 1 + 4t^2[/tex]. Finally, we integrate this expression over the interval [s, t] of curve C to obtain the value of the line integral.

(b) Using the Fundamental Theorem for line integrals, we find the potential function F(x, y, z) by taking the gradient of Q(x, y, z), which is ∇Q = (2x, 2y, 2z). We then substitute the initial and terminal points of the curve C, r(s), and r(t), into F(x, y, z) and subtract the results to obtain the line integral ∫[r(s), r(t)] ∇Q • dr = F(r(t)) - F(r(s)).

Learn more about Fundamental Theorem for line integrals here:

https://brainly.com/question/32250032

#SPJ11

3. [-/1 Points] DETAILS LARCALC11 15.2.006. Find a piecewise smooth parametrization of the path C. у 5 5 (5, 4) 4 3 2 1 X 1 2 3 4 5 ti + 1 Or(t) = osts 5 5i + (9-t)j, 5sts9 (14 – t)i, 9sts 14 0

Answers

The given path C can be parametrized as a piecewise function. It consists of two line segments and a horizontal line segment.

To find a piecewise smooth parametrization of the path C, we need to break it down into different segments and define separate parametric equations for each segment. The given path C has three segments. The first segment is a line segment from (5, 5) to (5, 4). We can parametrize this segment using the equation: r(t) = 5i + (9 - t)j, where t varies from 0 to 1.

The second segment is a line segment from (5, 4) to (4, 3). We can parametrize this segment using the equation: r(t) = (5 - 2t)i + 3j, where t varies from 0 to 1. The third segment is a horizontal line segment from (4, 3) to (0, 3). We can parametrize this segment using the equation: r(t) = (4 - 14t)i + 3j, where t varies from 0 to 1.

Combining these parametric equations for each segment, we obtain the piecewise smooth parametrization of the path C.

To learn more about parametrization click here: brainly.com/question/14666291

#SPJ11

Find a particular solution to the differential equation using the Method of Undetermined Coefficients. x'' (t)-2x' (t) + x(t) = 11² et A solution is xp (t) =

Answers

A particular solution to the given differential equation is xp(t) = -11²e^t.

To find a particular solution to the differential equation x''(t) - 2x'(t) + x(t) = 11²et using the Method of Undetermined Coefficients, we assume a particular solution of the form xp(t) = Ae^t.

Differentiating twice, we have xp''(t) = Ae^t.

Substituting into the differential equation,

we get Ae^t - 2Ae^t + Ae^t = 11²et.

Simplifying, we find -Ae^t = 11²et.

Equating the coefficients of et, we have -A = 11². Solving for A, we get A = -11².

Therefore, a particular solution to the given differential equation is xp(t) = -11²e^t.

To learn more about “differential equations” refer to the https://brainly.com/question/1164377

#SPJ11

Determine whether the following vector field is conservative on R. If so, determine the potential function. F= (y + 5z.x+52,5x + 5y) Select the correct choice below and, if necessary, fill in the answer box to complete your choice. O A. Fis conservative on R. The potential function is p(x,y,z) = | (Use C as the arbitrary constant:) OB. F is not conservative on R.

Answers

The curl of F is not equal to zero (it is equal to (1, 0, 0)), we conclude that the vector field F = (y + 5z, x + 5y) is not conservative on R. Option B.

To determine whether the vector field F = (y + 5z, x + 5y) is conservative on R, we need to check if its curl is equal to zero.

The curl of a vector field F = (F1, F2, F3) is given by the cross product of the del operator (∇) and F:

∇ × F = (∂F3/∂y - ∂F2/∂z, ∂F1/∂z - ∂F3/∂x, ∂F2/∂x - ∂F1/∂y)

For the vector field F = (y + 5z, x + 5y), we have:

∇ × F = (∂/∂y (x + 5y) - ∂/∂z (y + 5z), ∂/∂z (y + 5z) - ∂/∂x (y + 5z), ∂/∂x (x + 5y) - ∂/∂y (x + 5y))

Simplifying, we get:

∇ × F = (1 - 0, 0 - 0, 1 - 1)

= (1, 0, 0)

Therefore, the correct choice is:

B. F is not conservative on R.

Since F is not conservative, it does not have a potential function associated with it. Option B is correct.

For more such question on vector. visit :

https://brainly.com/question/15519257

#SPJ8

Find the value of f'(1) given that f(x) = 2x2+3 a)16 b) 16 In2 c)32 d) 321n2 e) None of the above

Answers

The value of f'(1), the derivative of f(x), can be found by calculating the derivative of the given function, f(x) = [tex]2x^2 + 3[/tex], and evaluating it at x = 1. The correct option is e) None of the above.

To find the derivative of f(x), we apply the power rule for differentiation, which states that if f(x) = [tex]ax^n,[/tex] then f'(x) = [tex]nax^(n-1).[/tex] Applying this rule to f(x) = 2x^2 + 3, we get f'(x) = 4x. Now, to find f'(1), we substitute x = 1 into the derivative expression: f'(1) = 4(1) = 4.

Therefore, the correct option is e) None of the above, as none of the provided answer choices matches the calculated value of f'(1), which is 4.

In summary, the value of f'(1) for the function f(x) = [tex]2x^2 + 3[/tex]is 4. The derivative of f(x) is found using the power rule, which yields f'(x) = 4x. By substituting x = 1 into the derivative expression, we obtain f'(1) = 4, indicating that the correct answer option is e) None of the above.

Learn more about derivative here:

https://brainly.com/question/29020856

#SPJ11

A student invests $6,000 in an account with an interest rate of 3% compounded semi-annually. How many years will it take for their account to be worth $14,000? Problem 30. A student invests $7,000 in an account with an interest rate of 4% compounded continuously. How many years will it take for their account to be worth $17,000?

Answers

It will take approximately 18.99 years for the student's account to be worth $14,000. In the second scenario, where the interest is compounded continuously, it will take approximately 8.71 years for the student's account to be worth $17,000.

In the first scenario, the interest is compounded semi-annually. To calculate the time it takes for the account to reach $14,000, we can use the formula for compound interest:

A = P(1 + r/n)^(nt)

Where A is the future value, P is the principal amount, r is the interest rate, n is the number of compounding periods per year, and t is the time in years. Rearranging the formula to solve for t, we have:

t = (1/n) * log(A/P) / log(1 + r/n)

Plugging in the values P = $6,000, A = $14,000, r = 0.03, and n = 2 (since it is compounded semi-annually), we can calculate t to be approximately 18.99 years.

In the second scenario, the interest is compounded continuously. The formula for continuous compound interest is:

A = Pe^(rt)

Using the same rearranged formula as before to solve for t, we have:

t = ln(A/P) / (r)

Plugging in the values P = $7,000, A = $17,000, and r = 0.04, we can calculate t to be approximately 8.71 years. Therefore, it will take approximately 18.99 years for the account to reach $14,000 with semi-annual compounding, and approximately 8.71 years for the account to reach $17,000 with continuous compounding.

Learn more about interest rate here:

https://brainly.com/question/15691955

#SPJ11

During a certain 24 - hour period , the temperature at time (
measured in hours from the start of the period ) was T(t) = 49 + 8t
- 1/2 * t ^ 2 degrees . What was the average temperature during
that p
During a certain 24-hour period, the temperature at time t (measured in hours from the start of the period) was T(t) = 49+8t- degrees. What was the average temperature during that period? The average

Answers

To find the average temperature during the 24-hour period, we need to calculate the total temperature over that period and divide it by the duration.

The total temperature is the definite integral of the temperature function T(t) over the interval [0, 24]:

Total temperature = ∫[0, 24] (49 + 8t - 1/2 * t^2) dt

We can evaluate this integral to find the total temperature:

Total temperature = [49t + 4t^2 - 1/6 * t^3] evaluated from t = 0 to t = 24

Total temperature = (49 * 24 + 4 * 24^2 - 1/6 * 24^3) - (49 * 0 + 4 * 0^2 - 1/6 * 0^3)

Total temperature = (1176 + 2304 - 0) - (0 + 0 - 0)

Total temperature = 3480 degrees

The duration of the period is 24 hours, so the average temperature is:

Average temperature = Total temperature / Duration

Average temperature = 3480 / 24

Learn more about temperature  here;

https://brainly.com/question/7510619

#SPJ11

Other Questions
researchers studying the relationship between intelligence and frequency of watching sports find that questionnaires measuring these variables are correlated at .30, p > .05. this suggests that a particle in the infinite square well has the initial wave function (x,0) = {Ax, 0 < x < a/2{A(a-x), a/2 < x < a(a) Sketch (x, 0), and determine the constant A. (b) Find (x, t). (c) What is the probability that a measurement of the energy would yield the value E1? (d) Find the expectation value of the energy, using Equation 2.21.2 I understand that survey advertisers only want answers from a specific set of people that meet a very specific profile. Select the exact answer below "Surveys are not for everyone and I must meet the specific profile required" a first-grade teacher implements vocabulary instruction through exposure to new words, instruction related to the word's definitions, and exposure to the words in context often in the class's reading. how could the teacher build on these practices to deepen student understanding of the words? A sample of 22 observations selected from a normally distributed population produced a sample variance of 18 . a. To see if the population variance differs from 14 write the null and alternative hypotheses. b. Using=.05=.05, find the critical values of22. Display the chi-square distribution curve's rejection and nonrejection areas. c. Determine the test statistic22value. d. Will you reject the null hypothesis presented in component an at a5%significance level? Two point charges are located at the following locations:q1= 2.5 10^5 C located at ~r1= mq2= 510^5C located at ~r2= < 4,3,0> m.a) Calculate the net electric force on an electron located at the origin. Answer must be a vector.b) Determine where to place a positive charge q3= 1.210^5C so that the net force on the electron located at the origin is zero. Find the derivative of the following function. f(x) = 3x4 Inx f'(x) = It is to be constructed in the shape of a hollow ring of mass 48,500 kg. The structures other than the ring shown in the figure have negligible mass compared to the ring. Members of the crew will walk on a deck formed by the inner surface of the outer cylindrical wall of the ring, with radius r = 115 m. The thickness of the ring is very small compared to the radius, so we can model the ring as a hoop. At rest when constructed, the ring is to be set rotating about its axis so that the people standing inside on this deck experience an effective free-fall acceleration equal to g. The rotation is achieved by firing two small rockets attached tangentially to opposite points on the rim of the ring. Your supervisor asks you to determine the following: (a) the time interval during which the rockets must be fired if each exerts a thrust of 120 N and (b) the period of rotation of the space station after it has reached its target rotation.1. Determine the time interval (in hr) during which the rockets must be fired if each exerts a thrust of 120 N.2. Determine the period of rotation of the space station (in s) after it has reached its target rotation. is there a way in wordpress to make changes to something, but that change only impact the mobile view much like a battery these generate electricity from chemical events Solve the following system of equations 5x, - 6x2 + xy =-4 - 2x, +7x2 + 3x3 = 21 3x, -12x2 - 2x3 = -27 with a) naive Gauss elimination, b) Gauss elimination with partial pivoting, Verify that the points are vertices of a parallelogram and findits area A(2,-3,1) B(6,5,-1) C(7,2,2) D(3,-6,4) what is containment ? Critically discuss the Political, Economic, Social and Cultural policies that Mobutu Sese Seko implemented in Congo from 1960 to 1970? the rate constant for this secondorder reaction is 0.830 m1s1 at 300 c. aproducts how long, in seconds, would it take for the concentration of a to decrease from 0.610 m to 0.220 m? A 27 - foot ladder is leaning against the wall. If the top of the ladder touches 22.5 feet up the wall, what is the angle evaluation of the ladder Please answer all parts in full. I will leave a like only if allparts are finished.3. The population of a city is 200,000 in 2000 and is growing at a continuous rate of 3.5% a. Give the population of the city as a function of the number of years since 2000.b. Graph the population Identify a true statement about the Philanthropinium, a school for boys founded by Johann Bernhard Basedow at Dessau, Germany.a. The Philanthropinium was a school for girls founded by Johann Bernhard Basedow.b. The Philanthropinium was a school for boys and girls founded by Johann Bernhard Basedow.c. The Philanthropinium was a school for boys founded by Johann Bernhard Basedow at Leipzig, Germany.d. The Philanthropinium was a school for boys founded by Johann Bernhard Basedow at Dessau, Germany. Let F(x, y, z)= 32'zi + (y + tan(2))j + (32-5y)k Use the Divergence Theorem to evaluate fF. S where Sis the top half of the sphere a + y +1 oriented upwards JsFd8= 12/5p what event in the restriction-modification system would result in a restriction of a host dna by the host restrictase?