find The Taylor polynomial of degree 3 for the given function centered at the given number a: furl= sin(x) at 9- T a

Answers

Answer 1

The Taylor polynomial of degree 3 for the given function centered at the given number a: furl= sin(x) at 9- T a can be represented as follows.

Taylor Polynomial for the sin(x) at a = 9 can be determined as follows; f(x) = sin(x)f(a) = sin(9)f'(x) = cos(x)f'(a) = cos(9)f''(x) = -sin(x)f''(a) = -sin(9)f'''(x) = -cos(x)f'''(a) = -cos(9)Now we can use the Taylor series formula to find the polynomial: Taylor series formula: f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2! + f'''(a)(x-a)³/3! + ....Now, substituting all the values in the formula we get, sin(9) + cos(9)(x-9) - sin(9)(x-9)²/2! - cos(9)(x-9)³/3!The Taylor polynomial of degree 3 for the given function centered at the given number a: furl= sin(x) at 9- T a can be represented as sin(9) + cos(9)(x-9) - sin(9)(x-9)²/2! - cos(9)(x-9)³/3!.The Taylor polynomial of degree 3 for the given function centered at the given number a: furl= sin(x) at 9- T a can be determined by finding the values of the derivative of the given function at a. Taylor Polynomial for the sin(x) at a = 9 can be determined as follows; f(x) = sin(x)f(a) = sin(9) F (x) = cos(x)f'(a) = cos(9)f''(x) = -sin(x)f''(a) = -sin(9)f'''(x) = -cos(x)f'''(a) = -cos(9)Now we can use the Taylor series formula to find the polynomial: Taylor series formula: f(a) + f'(a)(x-a) + f''(a)(x-a)²/2! + f'''(a)(x-a)³/3! + ....Substituting all the values in the formula we get, sin(9) + cos(9)(x-9) - sin(9)(x-9)²/2! - cos(9)(x-9)³/3! which is the Taylor polynomial of degree 3 for the given function centered at the given number a: furl= sin(x) at 9- T a.

Learn more about polynomial here:

https://brainly.com/question/29135551

#SPJ11


Related Questions

Consider the following vector field F(x, y) = Mi + Nj. F(x, y) = x?i + yj (a) Show that F is conservative. = ам ON ax = = ay (b) Verify that the value of lo F.dr is the same for each parametric representation of C. (1) C: 1/(t) = ti + t2j, ostsi Sa F. dr = = (ii) Cz: r2(0) = sin(o)i + sin(e)j, o SOS T/2 Ja F. dr = C2

Answers

To show that the vector field F(x, y) = x⋅i + y⋅j is conservative, we need to verify that its curl is zero. Taking the curl of F, we get ∇ × F = (Ny/Nx) - (Mx/My). Since M = x and N = y, we have Ny/Nx = 1 and Mx/My = 1, which means ∇ × F = 1 - 1 = 0. Thus, the vector field F is conservative.

(b) To verify that the value of ∫F⋅dr is the same for different parametric representations of C, we need to evaluate the line integral along each representation.

For the first parametric representation C1: r1(t) = ti + t^2j, where t ranges from 0 to s. Substituting this into F, we get F(r1(t)) = t⋅i + (t^2)⋅j. Evaluating ∫F⋅dr along C1, we have ∫(t⋅i + (t^2)⋅j)⋅(dt⋅i + 2t⋅dt⋅j) = ∫(t⋅dt) + (2t^3⋅dt) = (1/2)t^2 + (1/2)t^4.

For the second parametric representation C2: r2(θ) = sin(θ)i + sin(θ)j, where θ ranges from 0 to π/2. Substituting this into F, we get F(r2(θ)) = (sin(θ))⋅i + (sin(θ))⋅j. Evaluating ∫F⋅dr along C2, we have ∫((sin(θ))⋅i + (sin(θ))⋅j)⋅((cos(θ))⋅i + (cos(θ))⋅j) = ∫(sin(θ)⋅cos(θ) + sin(θ)⋅cos(θ))⋅dθ = ∫2sin(θ)⋅cos(θ)⋅dθ = sin^2(θ).

Comparing the results, (1/2)t^2 + (1/2)t^4 for C1 and sin^2(θ) for C2, we can see that they are not equal. Therefore, the value of ∫F⋅dr is not the same for each parametric representation of C.

Learn more about integral along each here:

https://brainly.com/question/31256305

#SPJ11

00 Evaluate whether the series converges or diverges. Justify your answer. 1 in ln(n) Σ. Στζη n=1

Answers

To evaluate whether the series Σ(1/ln(n)) diverges or converges, we need to analyze the behavior of the terms as n approaches infinity. In this case, the series diverges.

The series Σ(1/ln(n)) represents the sum of the terms 1/ln(n) as n takes on different positive integer values. To determine the convergence or divergence of the series, we examine the behavior of the individual terms.

As n approaches infinity, the natural logarithm of n, ln(n), also increases without bound. Consequently, the denominator of each term, ln(n), becomes arbitrarily large, while the numerator remains constant at 1.

Since the terms of the series do not approach zero as n increases, the series fails the necessary condition for convergence, known as the divergence test. According to the divergence test, if the terms of a series do not approach zero, the series must diverge.

In this case, the terms 1/ln(n) do not approach zero as n increases, as ln(n) becomes larger and larger. Therefore, the series Σ(1/ln(n)) diverges.

Hence, the series Σ(1/ln(n)) diverges, and it does not converge to a finite value.

Learn more about convergence here:

https://brainly.com/question/31440916

#SPJ11

= (9 points) Let F = (9x²y + 3y3 + 3e*)] + (4ev? + 144x)). Consider the line integral of F around the circle of radius a, centered at the origin and traversed counterclockwise. (a) Find the line inte

Answers

The line integral of F around the circle of radius a, centered at the origin and traversed counterclockwise, for a = 1 is: ∮ F · dr = 6π + 144π

To evaluate the line integral, we need to parameterize the circle of radius a = 1. We can use polar coordinates to do this. Let's define the parameterization:

x = a cos(t) = cos(t)

y = a sin(t) = sin(t)

The differential vector dr is given by:

dr = dx i + dy j = (-sin(t) dt) i + (cos(t) dt) j

Now, we can substitute the parameterization and dr into the vector field F:

F = (9x²y + 3y³ + 3ex) i + (4e(y²) + 144x) j

= (9(cos²(t))sin(t) + 3(sin³(t)) + 3e(cos(t))) i + (4e(sin²(t)) + 144cos(t)) j

Next, we calculate the dot product of F and dr:

F · dr = (9(cos²(t))sin(t) + 3(sin³(t)) + 3e^(cos(t))) (-sin(t) dt) + (4e(sin²(t)) + 144cos(t)) (cos(t) dt)

= -9(cos²(t))sin²(t) dt - 3(sin³(t))sin(t) dt - 3e(cos(t))sin(t) dt + 4e(sin²(t))cos(t) dt + 144cos²(t) dt

Integrating this expression over the range of t from 0 to 2π (a full counterclockwise revolution around the circle), we obtain:

∮ F · dr = ∫[-9(cos²(t))sin²(t) - 3(sin³(t))sin(t) - 3ecos(t))sin(t) + 4e(sin²(t))cos(t) + 144cos²(t)] dt

= 6π + 144π

learn more about line integral here:

https://brainly.com/question/32250032

#SPJ4

the complete question is:

Consider the vector field F = (9x²y + 3y³ + 3ex)i + (4e(y²) + 144x)j. We want to calculate the line integral of F around a counterclockwise traversed circle with radius a, centered at the origin. Specifically, we need to find the line integral for a = 1.

13. Find the value of f'(e) given that f(x) = In(x) + (Inx)** 3 a) e) None of the above b)3 14. Let y = x*. Find f(1). a) e) None of the above b)1 c)3 d)2

Answers

We differentiate f(x) = ln(x) + [tex](ln(x))^3[/tex] with regard to x and evaluate it at x = e to find f'(e). Find ln(x)'s derivative. 1/x is ln(x)'s derivative. The correct answer is None of the above.

Using the chain rule, determine the derivative of (ln(x))^3. u = ln(x),

therefore[tex](ln(x))^3[/tex] = [tex]u^3[/tex]. [tex]3u^2[/tex] is [tex]3u^3's[/tex] derivative.

We multiply by 1/x since u = ln(x).

[tex](ln(x))^3's[/tex] derivative with respect to x is[tex](3u^2)[/tex]. × (1/x)=[tex]3(ln(x)^{2/x}[/tex]

Let's find f(x)'s derivative:

ln(x) + [tex](ln(x))^3[/tex]. The derivative of two functions added equals their derivatives.

We have:

f'(x) =[tex]1+3(ln(x))^2/x[/tex].

x = e in the derivative expression yields f'(e):

f'(e) = [tex]1+3(ln(e))^2/e[/tex].

ln(e) = 1, simplifying to:

f'(e) = (1/e) +[tex]3(1)^2/e[/tex] = 1 + 3 = 4/e.

f'(e) is 4/e.

None of these.

To know more about differentiate

https://brainly.com/question/954654

#SPJ11

Find dy/dx by implicit differentiation. 4 sin(x) + cos(y) = sin(x) cos(y) Step 1 We begin with the left side. Remembering that y is a function of x, we have [4 sin(x) + cos(y)] = - Dy'. dx

Answers

The derivative dy/dx is undefined for the given equation. To find dy/dx using implicit differentiation for the equation 4sin(x) + cos(y) = sin(x)cos(y).

We start by differentiating both sides of the equation. The left side becomes [4sin(x) + cos(y)], and the right side becomes -dy/dx.

To find the derivative dy/dx, we need to differentiate both sides of the equation with respect to x.

Starting with the left side, we have 4sin(x) + cos(y). The derivative of 4sin(x) with respect to x is 4cos(x) by the chain rule, and the derivative of cos(y) with respect to x is -sin(y) * dy/dx using the chain rule and implicit differentiation.

So, the left side becomes 4cos(x) - sin(y) * dy/dx.

Moving to the right side, we have sin(x)cos(y). Differentiating sin(x) with respect to x gives us cos(x), and differentiating cos(y) with respect to x gives us -sin(y) * dy/dx.

Thus, the right side becomes cos(x) - sin(y) * dy/dx.

Now, equating the left and right sides, we have 4cos(x) - sin(y) * dy/dx = cos(x) - sin(y) * dy/dx.

To isolate dy/dx, we can move the sin(y) * dy/dx terms to one side and the remaining terms to the other side:

4cos(x) - cos(x) = sin(y) * dy/dx - sin(y) * dy/dx.

Simplifying, we get 3cos(x) = 0.

Since cos(x) can never be equal to zero for any value of x, the equation 3cos(x) = 0 has no solutions. Therefore, the derivative dy/dx is undefined for the given equation.

Learn more about implicit differentiation:

https://brainly.com/question/11887805

#SPJ11

The Taylor series, centered enc= /4 of f(x = COS X (x - 7/4)2(x - 7/4)3 (x-7/4)4 I) [1-(x - 7t/4)+ --...) 2 2 6 24 x ))3 )4 II) --...] 21 31 III) [x 11-(x - 1/4) - (x –1/4)2., (3- 7/4)3. (x=1/434 + – ) -] 2 6 24

Answers

The correct representation of the taylor series expansion of f(x) = cos(x) centered at x = 7/4 is:

iii) f(x) = cos(7/4) - sin(7/4)(x - 7/4) - cos(7/4)(x - 7/4)²/2 + sin(7/4)(x - 7/4)³/6 -.

the taylor series expansion of the function f(x) = cos(x) centered at x = 7/4 is given by:

f(x) = f(7/4) + f'(7/4)(x - 7/4) + f''(7/4)(x - 7/4)²/2! + f'''(7/4)(x - 7/4)³/3! + ...

let's calculate the derivatives of f(x) to determine the coefficients:

f(x) = cos(x)f'(x) = -sin(x)

f''(x) = -cos(x)f'''(x) = sin(x)

now, substituting x = 7/4 into the series:

f(7/4) = cos(7/4)

f'(7/4) = -sin(7/4)f''(7/4) = -cos(7/4)

f'''(7/4) = sin(7/4)

the taylor series expansion becomes:

f(x) = cos(7/4) - sin(7/4)(x - 7/4) - cos(7/4)(x - 7/4)²/2! + sin(7/4)(x - 7/4)³/3! + ...

simplifying further:

f(x) = cos(7/4) - sin(7/4)(x - 7/4) - cos(7/4)(x - 7/4)²/2 + sin(7/4)(x - 7/4)³/6 + ... ..

Learn more about function here:

https://brainly.com/question/30721594

#SPJ11

1 pts The total spent on research and development by the federal government in the U.S. during 1995-2007 can be approximated by S (t) = 57.5 . Int + 31 billion dollars (5 51317) where is the time in years from the start of 1990. What is the total spent in 1998, in billion dollars? (Do not use a dollar sign with your answer below and round value to 1-decimal place). Question 8 1 pts Continuing with the previous question, how fast was the total increasing in 1998, in billion dollars per year? Round answer to 1-decimal place.

Answers

The rate of increase in the total spending on research and development in 1998 is 0 billion dollars per year.

To find the total amount spent on research and development in 1998, we need to substitute the value of t = 1998 - 1990 = 8 into the equation:

S(t) = 57.5 ∫ t + 31 billion dollars (5t³ - 13)

S(8) = 57.5 ∫ 8 + 31 billion dollars (5(8)³ - 13)

S(8) = 57.5 ∫ 8 + 31 billion dollars (256 - 13)

S(8) = 57.5 ∫ 8 + 31 billion dollars (243)

S(8) = 57.5 * (8 + 31) * 243 billion dollars

S(8) ≈ 57.5 * 39 * 243 billion dollars

S(8) ≈ 554,972.5 billion dollars

Rounding to 1 decimal place, the total spent in 1998 is approximately 555.0 billion dollars.

Now, to find how fast the total was increasing in 1998, we need to find the derivative of the function S(t) with respect to t and substitute t = 8:

S'(t) = 57.5 (5t³ - 13)'

S'(8) = 57.5 (5(8)³ - 13)'

S'(8) = 57.5 (256 - 13)'

S'(8) = 57.5 (243)'

S'(8) = 57.5 * 0

S'(8) = 0

Learn more about   development here:

https://brainly.com/question/32180006

#SPJ11

Find the future value of this loan. $13,396 at 6.2% for 18 months The future value of the loan is $ (Round to the nearest cent as needed.)

Answers

The future value of a loan of $13,396 at an interest rate of 6.2% for 18 months is approximately $14,543.66.

To calculate the future value of a loan, we use the formula for compound interest:

Future Value = Principal * [tex](1 + Interest\, Rate)^{Time}[/tex]

In this case, the principal is $13,396, the interest rate is 6.2%, and the time is 18 months.

First, we need to convert the interest rate from a percentage to a decimal.

Dividing 6.2 by 100, we get 0.062.

Next, we substitute the values into the formula:

Future Value = $13,396 * (1 + 0.062)^18

Using a calculator or a spreadsheet, we can calculate the future value:

Future Value = $13,396 * (1.062)^18 ≈ $14,543.66

Therefore, the future value of the loan is approximately $14,543.66 (rounded to the nearest cent).

This means that after 18 months, including the interest, the total amount owed on the loan will be approximately $14,543.66.

Learn more about Compound interest here:

https://brainly.com/question/29008279

#SPJ11

Baron von Franhenteins is ie modeling his Laboratory, Untos to nely because he is opending somuch time setting up new Tes la coils and test tubes he doesn't know what that 570 villages are preparing to storm his castle and born it to the grond! The Hillagers stopped on the li way to the castle and equipped themselves at Mary Max's Monsters Mob Hart and each villager is now carrying eiather a torch or a Pitchfork. and pitch Forks / Mary Max sells torches for 3 Marker each For > MAIKS each. If the villages spent a total of 3030 Mants, how many pitchforks did the boy boy?

Answers

The number of villagers can be represented as the sum of the number of torches and pitchforks: M + P = 570.

Let's denote the number of pitchforks bought by the villagers as P. The cost of torches can be determined by subtracting the amount spent on pitchforks from the total amount spent. Therefore, the cost of torches is 3030 Marks - (10 Marks * P).

Given that each torch costs 3 Marks, we can set up an equation: 3 Marks * M = 3030 Marks - (10 Marks * P), where M represents the number of torches bought by the villagers. Simplifying the equation, we have 3M + 10P = 3030.

Since each villager is either carrying a torch or a pitchfork, the number of villagers can be represented as the sum of the number of torches and pitchforks: M + P = 570.

By solving the system of equations formed by the above two equations, we can find the values of M and P. Once we have the value of P, we will know the number of pitchforks bought by the villagers.

Learn  more about system of equations here:

https://brainly.com/question/20067450

#SPJ11

Question 8 1 point How Did I Do? In order to keep the songbirds in the backyard happy, Sara puts out 20 g of seeds at the end of each week. During the week, the birds find and eat 4/5 of the available

Answers

In order to keep the songbirds in the backyard happy, Sara puts out 20 g of seeds at the end of each week.

During the week, the birds find and eat 4/5 of the available seeds. At the end of the week, how many grams of seeds remain uneaten?Given:Sara puts out 20 g of seeds at the end of each week.The birds find and eat 4/5 of the available seeds.To find:The amount of uneaten seeds at the end of the week.Solution:If the birds eat 4/5 of the available seeds, then the backyard happy seeds are 1/5 of the available seeds.1/5 of the seeds are left => Uneaten seeds = (1/5) × Total seedsSo, let's first find out the total seeds available:If Sara puts out 20 g of seeds at the end of each week, then the available seeds before the birds start eating = 20 g.Let the total amount of seeds available be S.The birds eat 4/5 of the seeds, so the amount of seeds left = (1 - 4/5)S = (1/5)SAt the end of the week, the amount of uneaten seeds will be:Uneaten seeds = (1/5)S = (1/5) × 20 g = 4 g.

Learn more about integral here:

https://brainly.com/question/14291325

#SPJ11

Let T: R? - R be a linear transformation defined by T 3x - y 4x a. Write the standard matrix (transformation matrix). b. Is T onto/one to one? Why?"

Answers

The linear transformation T: R^2 → R^2, defined by T(x, y) = (3x - y, 4x + a), can be represented by a standard matrix. To find the standard matrix, we consider the images of the standard basis vectors. The image of (1, 0) under T is (3, 4), and the image of (0, 1) is (-1, a). Thus, the standard matrix for T is:

[ 3 -1 ] [ 4 a ]

To determine whether T is onto (surjective) or one-to-one (injective), we examine the null space and the rank of the matrix. The null space is the set of vectors that map to the zero vector. If the null space contains only the zero vector, T is one-to-one. If the rank of the matrix is equal to the dimension of the range, T is onto.

For T to be one-to-one, the null space of the standard matrix [ 3 -1 ; 4 a ] must only contain the zero vector. This implies that the equation [ 3x - y ; 4x + a ] = [ 0 ; 0 ] has only the trivial solution. To solve this system, we can set up the following equations: 3x - y = 0 and 4x + a = 0. Solving these equations yields x = 0 and y = 0. Therefore, the null space only contains the zero vector, indicating that T is one-to-one.

To determine whether T is onto, we need to compare the rank of the matrix to the dimension of the range, which is 2 in this case. The rank is the number of linearly independent rows or columns in the matrix. If the rank is equal to the dimension of the range, T is onto. In our case, the rank of the matrix can be determined by performing row operations to bring it into row-echelon form. However, the value of 'a' is not specified, so we cannot definitively determine the rank or whether T is onto without more information.

In summary, the standard matrix for the linear transformation T: R^2 → R^2 is [ 3 -1 ; 4 a ]. T is one-to-one since its null space only contains the zero vector. However, whether T is onto or not cannot be determined without knowing the value of 'a' and analyzing the rank of the matrix.

Learn more about linear transformation here : brainly.com/question/13595405

#SPJ11

= = (1 point) Given x = e-t and y = te41, find the following derivatives as functions of t. dy II dx day dx2 II (1 point) Consider the parametric curve given by the equations x(t) = x2 + 21t – 21

Answers

To find the derivatives of the given functions, we can differentiate them with respect to the variable t. For the first part, we find dy/dx by taking the derivative of y with respect to t and then dividing it by the derivative of x with respect to t. For the second part, we calculate the second derivative of x with respect to t.

Given x = e^(-t) and y = t*e^(4t), we can find the derivatives as functions of t. To find dy/dx, we take the derivatives of y and x with respect to t:

dy/dt = d/dt(te^(4t)) = e^(4t) + 4te^(4t),

dx/dt = d/dt(e^(-t)) = -e^(-t).

Now, we can find dy/dx by dividing dy/dt by dx/dt:

dy/dx = (e^(4t) + 4te^(4t))/(-e^(-t)) = -(e^(4t) + 4te^(4t))*e^t.

For the second part, we are given x(t) = [tex]t^{2}[/tex]+ 21t - 21. To find the second derivative of x with respect to t, we differentiate it twice:

d^2x/dt^2 = d/dt(d/dt([tex]t^{2}[/tex]+ 21t - 21)) = d/dt(2t + 21) = 2.

In summary, the derivatives as functions of t are:

dy/dx = -(e^(4t) + 4t*e^(4t))*e^t,

d^2x/d[tex]t^{2}[/tex] = 2.

Learn more about derivative here: https://brainly.com/question/28144387

#SPJ11

help!!! urgent :))
Identify the 42nd term of an arithmetic sequence where a1 = −12 and a27 = 66.

a) 70
b) 72
c) 111
d) 114

Answers

The 42nd term is 111. Option C

How to determine the value

The formula for the calculating the nth terms of an arithmetic sequence is expressed as;

Tn = a₁ + (n-1)d

Such that the parameters are expressed as;

Tn in the nth terma₁ is the first termn is the number of termsd is the common difference

Substitute the values, we have;

66 =-12 + 26(d)

expand bracket

66 = -12 + 26d

collect like terms

26d = 78

d = 3

Substitute the value

T₄₂ = -12 + (42 -1 )3

expand the bracket

T₄₂ = -12 +123

Add the values

T₄₂ =111

Learn more about arithmetic sequence at: https://brainly.com/question/6561461

#SPJ1

Find the volume of the region bounded above by the cylinder z = 4 - y2 and below by the paraboloid z = 2x² + y2. rhon

Answers

To find the volume of the region bounded above by the cylinder z = 4 - y^2 and below by the paraboloid z = 2x^2 + y^2, we need to calculate the double integral over the region.

The region of interest is defined by the intersection of the cylinder and the paraboloid, which occurs when the z-values of both equations are equal:

4 - y^2 = 2x^2 + y^2

Rearranging the equation, we have:

3y^2 = 2x^2 + 4

To simplify the calculation, we can switch to cylindrical coordinates. In cylindrical coordinates, the equation becomes:

3r^2 sin^2(θ) = 2r^2 cos^2(θ) + 4

Simplifying further, we have:

r^2 = 4/(3 sin^2(θ) - 2 cos^2(θ))

Now we can set up the double integral in cylindrical coordinates:

Volume = ∫∫R (4/(3 sin^2(θ) - 2 cos^2(θ))) r dr dθ

Where R represents the region in the xy-plane that corresponds to the intersection of the cylinder and paraboloid.

Evaluating this double integral over the region R will give us the volume of the bounded region.

To learn more about integral click here:

brainly.com/question/31059545

#SPJ11

20. [-12 Points) DETAILS LARCALCET7 10.3.063. MY NOTES ASK YOUR TEACHER PRACTICE ANOTHER Find the area of the surface generated by revolving the curve about each given axis. x = 2t, y = 6t, Ostse (a)

Answers

The area of the surface generated by revolving the curve about each given axis. x = 2t, y = 6t is 6π ∫ [a, b] x √(10) dx.

To find the area of the surface generated by revolving the curve about a given axis, we can use the formula for the surface area of revolution. The formula is given by: A = 2π ∫ [a, b] f(x) √(1 + (f'(x))^2) d.

In this case, the curve is defined by the parametric equations x = 2t and y = 6t. To find the area of the surface generated by revolving this curve, we need to eliminate the parameter t and express y in terms of x.

From the equation x = 2t, we can solve for t and get t = x/2. Substituting this into the equation y = 6t, we have y = 6(x/2), which simplifies to y = 3x. Now, we can find the derivative of y with respect to x: dy/dx = d(3x)/dx = 3

Using the formula for surface area, the area A is given by:

A = 2π ∫ [a, b] y √(1 + (dy/dx)^2) dx

= 2π ∫ [a, b] 3x √(1 + 3^2) dx

= 6π ∫ [a, b] x √(10) dx

To find the limits of integration [a, b], we need to determine the range of x. Since the parametric equation x = 2t, we can let t vary over its entire range to obtain the range of x. Therefore, the limits of integration are determined by the range of t.

To know more about derivatives, refer here :

https://brainly.com/question/29144258#

#SPJ11

Determine the radius of convergence of the following power series. Then test the endpoints to determine the interval of convergence. k Σ(-1)* 3 10k The radius of convergence is R = The interval of co

Answers

The correct answer for radius of convergence is R = 10 and the interval of convergence is [-10, 10].

To determine the radius of convergence of the power series Σ((-1)^k)*(3/(10^k)), we can use the ratio test.

Let's apply the ratio test to the given power series:

a_k = (-1)^k * (3/(10^k))

a_{k+1} = (-1)^(k+1) * (3/(10^(k+1)))

Calculate the absolute value of the ratio of consecutive terms:

|a_{k+1}/a_k| = |((-1)^(k+1))*(3/(10^(k+1)))) / ((-1)^k) * (3/(10^k))| = 1/10. The limit of 1/10 as k approaches infinity is L = 1/10.

According to the ratio test, the series converges if L < 1, which is satisfied in this case. Therefore, the series converges.

The radius of convergence (R) is determined by the reciprocal of the limit L: R = 1 / L = 1 / (1/10) = 10. So, the radius of convergence is R = 10. For the left endpoint, x = -10, the series becomes Σ((-1)^k)*(3/(10^k)), which is an alternating series.

For the right endpoint, x = 10, the series becomes Σ((-1)^k)*(3/(10^k)), which is also an alternating series. Both alternating series converge, so the interval of convergence is [-10, 10].

To know more about power series refer here:

https://brainly.com/question/29896893#

#SPJ11

use fermat factoring algorithm to factor n=387823. Please write
all steps.

Answers

Using the fermat factoring algorithm, we have expressed 387823 as the product of two factors, which are 639 + 21393 and 639 - 21393.

the steps involved in the fermat factoring algorithm to factor the given number, n = 387823.  

step 1: start by computing the square root of n (rounded up to the nearest integer). in this case, the square root of 387823 is approximately 622.67, so we'll round it up to 623.  

step 2: next, calculate the difference between the square of the rounded square root and n. in this case, (623²) - 387823 = 158576 - 387823 = -229247.  

step 3: check if the result from step 2 is a perfect square. if it is, we can factor n using the formula (sqrt(result) + sqrt(n))² - n. in this case, -229247 is not a perfect square.  

step 4: increment the square root value by 1 and repeat steps 2 and 3. we'll use 624 as the new square root value.  

step 5: calculate the difference between the square of the updated square root and n. (624²) - 387823 = 389376 - 387823 = 1553.  

step 6: check if the result from step 5 is a perfect square. in this case, 1553 is not a perfect square.  

step 7: repeat steps 4-6 by incrementing the square root value until we find a perfect square difference.  

step 8: after several iterations, we find that when the square root value is 595, the difference ((595²) - 387823) equals 1936, which is a perfect square (44²).  

step 9: now we can factor n using the formula (sqrt(result) + sqrt(n))² - n. in this case, (44 + 595)² - 387823 = 639² - 387823 = 409216 - 387823 = 21393.  

step 10: we have successfully factored n as 387823 = (639 + 21393) * (639 - 21393).

Learn more about factoring  here:

 https://brainly.com/question/14549998

#SPJ11

Show work please
Evaluate the indefinite integral. | (182)® + 4(82)?) (182)* + 1)"? dz =

Answers

Therefore, the answer is (182x^3)/3 + x^4 + C


Given the integral
∫ (182x^2 + 4x^3) dx
To evaluate the indefinite integral, we'll use the power rule for integration, which states that:
∫ x^n dx = (x^(n+1))/(n+1) + C
Now, we can integrate each term individually:
∫ (182x^2) dx = (182 * (x^(2+1)) / (2+1)) + C = (182x^3)/3 + C₁
∫ (4x^3) dx = (4 * (x^(3+1)) / (3+1)) + C = x^4 + C₂
By combining both integrals, we get:
∫ (182x^2 + 4x^3) dx = (182x^3)/3 + x^4 + C

Therefore, the answer is (182x^3)/3 + x^4 + C

To know more about equations visit:

https://brainly.com/question/22688504

#SPJ11

a) Draw the Hasse diagram for the poset divides (1) on S={2,3,5,6,12,18,36} b) Identify the minimal, maximal, least and greatest elements of the above Hasse diagram

Answers

In the Hasse diagram, the elements of the set S are represented as nodes, and the "divides" relation is denoted by the edges.  The maximal element is 36, as it has no elements above it. The least element is 2, as it is smaller than any other element in the poset.

a) The Hasse diagram for the poset "divides" on the set S={2,3,5,6,12,18,36} is as follows:

             36

           /     \

          18    12

          /       \

         9       6

          /     \

         3       2

b) In the given Hasse diagram, the minimal elements are 2 and 3, as they have no elements below them. The maximal element is 36, as it has no elements above it. The least element is 2, as it is smaller than any other element in the poset. The greatest element is 36, as it is larger than any other element in the poset.

In the Hasse diagram, the elements of the set S are represented as nodes, and the "divides" relation is denoted by the edges. An element x is said to divide another element y (x | y) if y is divisible by x without a remainder.

The minimal elements are the ones that have no elements below them. In this case, 2 and 3 are minimal elements because no other element in the set divides them.

The maximal element is the one that has no elements above it. In this case, 36 is the maximal element because it is not divisible by any other element in the set.

The least element is the smallest element in the poset, which in this case is 2. It is smaller than all other elements in the set.

The greatest element is the largest element in the poset, which in this case is 36. It is larger than all other elements in the set.

Therefore, the minimal elements are 2 and 3, the maximal element is 36, the least element is 2, and the greatest element is 36 in the given Hasse diagram.

Learn more about set here:

https://brainly.com/question/30705181

#SPJ11

4. [0/0.5 Points] DETAILS PREVIOUS ANSWERS SCALCET8 6.5.014. Find the numbers b such that the average value of f(x) = 7 + 10x = 6x2 on the interval [0, b] is equal to 8. b = -8 – 8V 16 -12 (smaller

Answers

the numbers b such that the average value of f(x) = 7 + 10x + 6x^2 on the interval [0, b] is equal to 8 are:

b = 0, (-15 + √249) / 4, (-15 - √249) / 4

To find the numbers b such that the average value of f(x) = 7 + 10x + 6x^2 on the interval [0, b] is equal to 8, we need to use the formula for the average value of a function:

Avg = (1/(b-0)) * ∫[0,b] (7 + 10x + 6x^2) dx

We can integrate the function and set it equal to 8:

8 = (1/b) * ∫[0,b] (7 + 10x + 6x^2) dx

To solve this equation, we'll calculate the integral and then manipulate the equation to solve for b.

Integrating the function 7 + 10x + 6x^2 with respect to x, we get:

∫[0,b] (7 + 10x + 6x^2) dx = 7x + 5x^2 + 2x^3/3

Now, substituting the integral back into the equation:

8 = (1/b) * (7b + 5b^2 + 2b^3/3)

Multiplying both sides of the equation by b to eliminate the fraction:

8b = 7b + 5b^2 + 2b^3/3

Multiplying through by 3 to clear the fraction:

24b = 21b + 15b^2 + 2b^3

Rearranging the equation and simplifying:

2b^3 + 15b^2 - 3b = 0

To find the values of b, we can factor out b:

b(2b^2 + 15b - 3) = 0

Setting each factor equal to zero:

b = 0 (One possible value)

2b^2 + 15b - 3 = 0

We can use the quadratic formula to solve for b:

b = (-15 ± √(15^2 - 4(2)(-3))) / (2(2))

b = (-15 ± √(225 + 24)) / 4

b = (-15 ± √249) / 4

The two solutions for b are:

b = (-15 + √249) / 4

b = (-15 - √249) / 4

To know more about integral visit:

brainly.com/question/31059545

#SPJ11

log5[tex]\frac{1}{25}[/tex]

Answers

[tex]\Huge \boxed{\text{Answer = -2}}[/tex]

Step-by-step explanation:

To solve this logarithmic expression, we need to ask ourselves: what power of 5 gives us the fraction [tex]\frac{1}{25}[/tex]? In other words, we need to solve the equation:

[tex]\large 5^{x} = \frac{1}{25}[/tex]

We can simplify [tex]\frac{1}{25}[/tex] to [tex]5^{-2}[/tex], so our equation becomes:

[tex]5^{x} = 5^{-2}[/tex]

Now we may find [tex]x[/tex] by applying the rule "if two powers with the same base are equal, then their exponents must be equal." As a result, we have:

[tex]x = -2[/tex]

So the value of the logarithmic expression [tex]\log_5 \frac{1}{25}[/tex] is -2.

----------------------------------------------------------------------------------------------------------

6 Use the trapezoidal rule with n = 3 to approximate √√√4 + x4 in f√/4+x² de dx. 0 T3 = (Round the final answer to two decimal places as needed. Round all intermediate valu needed.)

Answers

Using the trapezoidal rule with n = 3, we can approximate the integral of the function f(x) = √(√(√(4 + x^4))) over the interval [0, √3].

The trapezoidal rule is a numerical method for approximating definite integrals. It approximates the integral by dividing the interval into subintervals and treating each subinterval as a trapezoid.

Given n = 3, we have four points in total, including the endpoints. The width of each subinterval, h, is (√3 - 0) / 3 = √3 / 3.

We can now apply the trapezoidal rule formula:

Approximate integral ≈ (h/2) * [f(a) + 2∑(k=1 to n-1) f(a + kh) + f(b)],

where a and b are the endpoints of the interval.

Plugging in the values:

Approximate integral ≈ (√3 / 6) * [f(0) + 2(f(√3/3) + f(2√3/3)) + f(√3)],

≈ (√3 / 6) * [√√√4 + 2(√√√4 + (√3/3)^4) + √√√4 + (√3)^4].

Evaluating the expression and rounding the final answer to two decimal places will provide the approximation of the integral.

Learn more about trapezoidal rule here:

https://brainly.com/question/30401353

#SPJ11

(25 points) If is a solution of the differential equation then its coefficients Care related by the equation Cn+2 = Cn+1 + Cn 00 y = E C₁x¹ y" + (-2x + 3)y' – 3y = 0,

Answers

The coefficients Cn of the solution to the given differential equation are related by the equation Cn+2 = Cn+1 + Cn. This relationship allows us to determine the values of Cn based on the initial conditions.

The given differential equation is a second-order linear homogeneous equation. To solve it, we assume a solution of the form y = E C₁x¹, where E is the base of the natural logarithm and C₁ is a coefficient to be determined.

Taking the derivatives of y, we find y' = C₁E x¹ and y" = C₁E x¹. Substituting these expressions into the differential equation, we get:

C₁E x¹ - 2x(C₁E x¹) + 3(C₁E x¹) - 3(C₁E x¹) = 0.

Simplifying the equation, we have:

C₁E x¹ - 2C₁xE x¹ + 3C₁E x¹ - 3C₁E x¹ = 0.

Factorizing C₁E x¹ from each term, we obtain:

C₁E x¹ (1 - 2x + 3 - 3) = 0.

Simplifying further, we have:

C₁E x¹ (1 - 2x) = 0.

For this equation to hold true, either C₁E x¹ = 0 or (1 - 2x) = 0. However, C₁E x¹ cannot be zero, as it is assumed to be non-zero. Therefore, we focus on (1 - 2x) = 0.

Solving (1 - 2x) = 0, we find x = 1/2. This indicates that the solution has a singular point at x = 1/2. At this point, the coefficients Cn follow the relationship Cn+2 = Cn+1 + Cn, allowing us to determine the values of Cn based on the initial conditions.

Learn more about homogeneous equation here:

https://brainly.com/question/30624850

#SPJ11

The length of the polar curve r = a sin (* OSO S T is 157, find the constant a. 0 << 2

Answers

The value of constant "a" is approximately 24.961.

To find the constant "a" given that the length of the polar curve is 157, we need to evaluate the integral representing the arc length of the curve.

The arc length of a polar curve is given by the formula:

L = ∫[α, β] √(r² + (dr/dθ)²) dθ

In this case, the polar curve is represented by r = a sin(θ), where 0 ≤ θ ≤ 2π. Let's calculate the arc length:

L = ∫[0, 2π] √(a² sin²(θ) + (d/dθ(a sin(θ)))²) dθ

L = ∫[0, 2π] √(a² sin²(θ) + a² cos²(θ)) dθ

L = ∫[0, 2π] √(a² (sin²(θ) + cos²(θ))) dθ

L = ∫[0, 2π] a dθ

L = aθ | [0, 2π]

L = a(2π - 0)

L = 2πa

Given that L = 157, we can solve for "a":

2πa = 157

a = 157 / (2π)

Using a calculator for the division, we find value of polar curve :

a ≈ 24.961

Therefore, the value of constant "a" is approximately 24.961.

To know more about polar curve check the below link:

https://brainly.com/question/29197119

#SPJ4

Given f(x)=3x^4-16x+18x^2, -1 ≤ x ≤ 4
Determinr whether f(x) has local maximum, global max/local min.
Find any inflection points if any

Answers

There is a local maximum and local minimum in the function f(x) = 3x^4 - 16x + 18x^2. Neither a global maximum nor minimum exist. This function has no points of inflection.

We must examine f(x)'s crucial points and second derivative in order to see whether it contains local maximum or minimum points.

By setting the derivative of f(x) to zero, we may first determine the critical points:

f'(x) = 12x^3 - 16 + 36x = 0

To put the equation simply, we have: 12x3 + 36x - 16 = 0.

Unfortunately, there are no straightforward factorizations for this cubic equation, thus we must utilise numerical techniques or calculators to determine the estimated values of the critical points. Two critical points are discovered when the equation is solved: x -1.104 and x 0.701.

We must examine the second derivative of f(x) to discover whether these important locations are local maximum or minimum points.

The following is the derivative of f'(x): f''(x) = 36x2 + 36

Since f(x) has no inflection points, the second derivative is always positive.

We determine that f(x) has a local maximum at x -1.104 and a local minimum at x 0.701 by examining the values of f(x) at the crucial points and the interval's endpoints. The global maximum and minimum of f(x) may, however, reside outside of the provided interval, which is -1 x 4. As a result, neither a global maximum nor a global minimum exist for f(x) inside the specified range.

Learn more about global maximum here:

https://brainly.com/question/31403072

#SPJ11








Two lines have equations L, (0,0,1)+ s(1,-1,1),s e R and 2 (2,1,3) + (2,1,0), 1 € R. What is the minimal distance between the two lines? (5 marks)

Answers

The two lines have equations L, (0,0,1)+ s(1,-1,1),s e R and 2 (2,1,3) + (2,1,0), 1 € R. Let's find out the minimum distance between the two lines by following the given steps:Step 1: Find the direction vectors of both lines.

The direction vector of line L is d₁ = (1,-1,1)The direction vector of line 2 is d₂ = (2,1,0)Step 2: Compute the vector between any two points, one from each line, and project this vector onto both direction vectors.The vector between line L and line 2 is given by w = (2,1,3) - (0,0,1) = (2,1,2)

Now, we want to project w onto the direction vector of line L and line 2. Let P be the orthogonal projection of w onto line L.

We have\[tex][P = \frac{{{w}^{T}}\cdot {{d}_{1}}}{||{{d}_{1}}||^{2}}\cdot {{d}_{1}} = \frac{(2,1,2)\cdot (1,-1,1)}{(1+1+1)^{2}}\cdot (1,-1,1) = \frac{5}{3}\cdot (1,-1,1) = (\frac{5}{3},-\frac{5}{3},\frac{5}{3})\][/tex]

Let Q be the orthogonal projection of w onto line 2. We have[tex]\[Q = \frac{{{w}^{T}}\cdot {{d}_{2}}}{||{{d}_{2}}||^{2}}\cdot {{d}_{2}} = \frac{(2,1,2)\cdot (2,1,0)}{(2+1)^{2}}\cdot (2,1,0) = \frac{10}{9}\cdot (2,1,0) = (\frac{20}{9},\frac{10}{9},0)\][/tex]

Step 3: Find the minimum distance between the two lines.The minimum distance between line L and line 2 is given by the length of the vector w - (P - Q)

This gives[tex]\[w - (P - Q) = (2,1,2) - (\frac{5}{3},-\frac{5}{3},\frac{5}{3}) - (\frac{20}{9},\frac{10}{9},0) = (\frac{1}{9},\frac{4}{9},\frac{4}{3})\][/tex]

Therefore, the minimum distance between line L and line 2 is[tex]\[\left\| w - (P - Q) \right\| = \sqrt{\left(\frac{1}{9}\right)^2 + \left(\frac{4}{9}\right)^2 + \left(\frac{4}{3}\right)^2} = \boxed{\frac{5\sqrt{3}}{3}}\][/tex]

For more question on equations

https://brainly.com/question/17145398

#SPJ8

Sorry I know it’s long but I need help Jackie is selling smoothies at a school fair. She starts the day with $15 in her cash box to provide change to her customers. If each smoothie costs $3.75, which graph represents the balance of the cash box, y, after Jackie sells x smoothies?
A.
A graph plots the number of smoothies sold versus the balance of the cash box. A diagonal curve rises through (0, 0), (1, 15), (2, 30) and (4, 60) on the x y coordinate plane.
B.
A graph plots the number of smoothies sold versus the balance of the cash box. A diagonal curve rises through (0, 15), (2, 22 point 5), (4, 30), (6, 37 point 5), (8, 45), (10, 52 point 5), (12, 60), (14, 67 point 5) and (16, 75).
C.
A graph plots the number of smoothies sold versus the balance of the cash box. A diagonal curve rises through (0, 15), (2, 30), (4, 45), (6, 60), (8, 75) on the x y coordinate plane.
D.
A graph plots the number of smoothies sold versus the balance of the cash box. A diagonal curve rises through (0, 7 point 5), (2, 15), (4, 22 point 5), (6, 30), (8, 37 point 5), (10, 45), (12, 52 point 5), (14, 60) and (16, 67 point 5).

Answers

option B accurately represents the relationship between the number of smoothies sold and the balance of the cash box, demonstrating the gradual increase in the cash box balance as Jackie sells more smoothies.

Option B is the correct answer.

We have,

The graph plots the number of smoothies sold (x) on the x-axis and the balance of the cash box (y) on the y-axis.

The points on the graph indicate specific values of x and y.

For example, at the starting point (0, 15), which represents zero smoothies sold, the cash box balance is $15.

As Jackie sells more smoothies, the balance increases gradually.

The diagonal curve in the graph indicates a linear relationship between the number of smoothies sold and the balance of the cash box.

Each time two smoothies are sold (x increases by 2), the balance of the cash box increases by $7.5 (y increases by 7.5).

This linear relationship is consistent throughout the graph, showing that as more smoothies are sold, the cash box balance increases in a predictable and proportional manner.

Therefore,

option B accurately represents the relationship between the number of smoothies sold and the balance of the cash box, demonstrating the gradual increase in the cash box balance as Jackie sells more smoothies.

Learn more about graphs here:

https://brainly.com/question/13118993

#SPJ1

Find the sum of the series Σk=1k(k+2)' a) 1 b) 1.5 c) 2 d) the series diverges if it exists.

Answers

The sum of the series  Σk=1k(k+2)' is b) 1.5. The correct option is b.

To find the sum of the series Σk=1k(k+2), we can expand the terms and simplify the expression:

Σk=1k(k+2) = 1(1+2) + 2(2+2) + 3(3+2) + ...

Expanding each term:

= 1(3) + 2(4) + 3(5) + ...

= 3 + 8 + 15 + ...

To find a pattern, let's subtract consecutive terms:

8 - 3 = 5

15 - 8 = 7

We observe that the differences between consecutive terms are increasing by 2 each time.

So, the series can be written as:

3 + (3+2) + (3+2+2) + (3+2+2+2) + ...

= 3(1) + 2(1+2) + 2(1+2+3) + 2(1+2+3+4) + ...

= 3Σk=1k + 2Σk=1k(k+1)

Using the formulas for the sum of the first n natural numbers and the sum of the first n squared numbers:

= 3(n(n+1)/2) + 2(n(n+1)(2n+1)/6)

Simplifying this expression, we get:

= (3n^2 + 5n)/2

To determine whether the series converges or diverges, we need to take the limit as n approaches infinity.

lim(n→∞) (3n^2 + 5n)/2

The degree of the numerator and denominator is the same (n^2), so we divide each term by n^2:

lim(n→∞) (3 + 5/n)/2

As n approaches infinity, the term 5/n goes to 0:

lim(n→∞) (3 + 0)/2 = 3/2 = 1.5

Therefore, the sum of the series Σk=1k(k+2) is 1.5, so the correct answer is b) 1.5.

To know more about sum of a series refer here:

https://brainly.com/question/31583448#

#SPJ11

a. If 7000 dollars is invested in a bank account at an interest rate of 9 per cent per year, find the amount in the bank after 12 years if interest is compounded annually
b. Find the amount in the bank after 12 years if interest is compounded quaterly
c. Find the amount in the bank after 12 years if interest is compounded monthly
d. Finally, find the amount in the bank after 12 years if interest is compounded continuously

Answers

A. The amount after interest rate is $18,052.07. B. The amount is $18,342.85. C. The amount is $18,408.71. D. The amount is $18,433.16.

A. To calculate the amount after 12 years compounded annually, you can use the formula [tex]A =​​ P(1 + r/n)^(nt)[/tex]. where A is the final amount, P is the principal amount (initial investment), r is the interest rate, n is the number of compounding periods per year, and t is the number of years. Substituting in the values, [tex]A = 7000(1 + 0.09/1)^(1*12)[/tex]≈ $18,052.07.

B. For quarterly compounding, the interest rate must be divided by the number of compounding periods per year (r = 0.09/4) and the number of compounding periods must be multiplied by the number of years (nt = 412). Using the formula, [tex]A = 7000(1 + 0.09/4)^(412)[/tex]≈ $18,342.85.

C. Similarly, for monthly compounding, r = 0.09/12 and nt = 1212. Using the formula, [tex]A = 7000(1 + 0.09/12)^(1212)[/tex]≈ $18,408.71.

D. Continuous formulations can be calculated using the formula[tex]A =​​ Pe^(rt)[/tex]. where e is the base of natural logarithms. Substituting in the values, [tex]A = 7000e^(0.09*12)[/tex]≈ $18,433.16. So after 12 years, your bank balance will be approximately $18,052.07 (compounded annually), $18,342.85 (compounded quarterly), $18,408.71 (compounded monthly), and $18,433.16 (compounded continuously). 


Learn more about interest rate here:

https://brainly.com/question/28272078


#SPJ11




A curve C is defined by the parametric equations x=t^2 , y = t^3 - 3t. (a) Show that C has two tangents at the point (3, 0) and find their equations. (b) Find the points on C where the tangent is horizont

Answers

a) The equations of the two tangents are:

T₁: y =[tex](3 - \sqrt(3))(x - 3)[/tex]

T₂: y =[tex](3 - \sqrt(3))(x - 3)[/tex]

b) The points are (1, -2) and (1, -2).

How to find the equations of the tangents to the curve C at the point (3, 0)?

To find the equations of the tangents to the curve C at the point (3, 0), we need to find the derivative of y with respect to x and evaluate it at x = 3.

(a) Finding the tangents at (3, 0):

Find dx/dt and dy/dt

To find the derivative of y with respect to x, we use the chain rule:

dy/dx = (dy/dt)/(dx/dt)

dx/dt = 2t  (differentiating x =[tex]t^2[/tex])

dy/dt = [tex]3t^2 - 3[/tex]  (differentiating y =[tex]t^3 - 3t[/tex])

Express t in terms of x

From x = [tex]t^2[/tex], we can solve for t:

[tex]t = \sqrt(x)[/tex]

Substitute t into dx/dt and dy/dt

Substituting [tex]t = \sqrt(x)[/tex] into dx/dt and dy/dt, we get:

dx/dt = [tex]2\sqrt(x)[/tex]

dy/dt = [tex]3(x^{(3/2)}) - 3[/tex]

Find dy/dx

Now, we can find dy/dx by dividing dy/dt by dx/dt:

dy/dx = (dy/dt)/(dx/dt)

      =[tex](3(x^{(3/2)}) - 3) / (2\sqrt(x))[/tex]

Evaluate dy/dx at x = 3

Substituting x = 3 into dy/dx, we get:

dy/dx = [tex](3(3^{(3/2)}) - 3) / (2\sqrt(3))[/tex]

      = [tex](9\sqrt(3) - 3) / (2\sqrt(3))[/tex]

      = [tex](3(3\sqrt(3) - 1)) / (2\sqrt(3))[/tex]

      = [tex](3\sqrt(3) - 1) / \sqrt(3)[/tex]

      =[tex](3\sqrt(3) - 1) * \sqrt(3) / 3[/tex]

      =[tex]3 - \sqrt(3)[/tex]

Find the equations of the tangents

The equation of a tangent at the point (x₀, y₀) with a slope m is given by:

y - y₀ = m(x - x₀)

For the first tangent, let's call it T₁, we have:

Slope m₁ = [tex]3 - \sqrt(3)[/tex]

Point (x₀, y₀) = (3, 0)

Using the point-slope form, the equation of the first tangent T₁ is:

y - 0 = [tex](3 - \sqrt(3))(x - 3)[/tex]

y =[tex](3 - \sqrt(3))(x - 3)[/tex]

For the second tangent, let's call it T₂, we have:

Slope m₂ = [tex]3 - \sqrt(3)[/tex]

Point (x₀, y₀) = (3, 0)

Using the point-slope form, the equation of the second tangent T₂ is:

y - 0 =[tex](3 - \sqrt(3))(x - 3)[/tex]

y = [tex](3 - \sqrt(3))(x - 3)[/tex]

Therefore, the equations of the two tangents to the curve C at the point (3, 0) are:

T₁: y = [tex](3 - \sqrt(3))(x - 3)[/tex]

T₂: y = [tex](3 - \sqrt(3))(x - 3)[/tex]

How to find the points on C where the tangent is horizontal?

(b) Finding the points on C where the tangent is horizontal:

For the tangent to be horizontal, dy/dx must be equal to zero.

dy/dx = 0

[tex](3(x^(3/2)) - 3) / (2\sqrt(x))=0[/tex]

Setting the numerator equal to zero, we have:

[tex]3(x^{(3/2)}) - 3 = 0\\x^{(3/2)} - 1 = 0\\x^{(3/2)} = 1\\x = 1^{(2/3)}\\x = 1[/tex]

Substituting x = 1 back into the parametric equations for C, we get:

[tex]x = t^21 \\\\= t^2t \\= \pm 1[/tex]

[tex]y = t^3 - 3t\\y = (\pm1)^3 - 3(\pm1)\\y = \pm1 - 3\\y = -2, -2\\[/tex]

Therefore, the points on C where the tangent is horizontal are (1, -2) and (1, -2).

Learn more about tangents to a curve

brainly.com/question/27548453

#SPJ11

Other Questions
Given the function f(2) 2x +3 if 3x + 5 if 3 3 Find the average rate of change in f on the interval [ 3, 4]. Submit Question a tank whose bottom is a mirror is filled with water to a depth of 19.5 cmcm . a small fish floats motionless 7.50 cmcm under the surface of the water. the maximum commission amount a mortgage loan broker can charge on a second mortgage loan of 3 years for $18,000 is what? Starting at age 35, you deposit $2000 a year into an IRA account for retirement. Treat the yearly deposits into the account as a continuous income stream. If money in the account earns 7%, compounded continuously, how much will be in the account 30 years later, when you retire at age 65? How much of the final amount is interest? What is the value of the IRA when you turn 65? $ (Round to the nearest dollar as needed.) How much of the future value is interest? $ (Round to the nearest dollar as needed.) Test a claim on three locations ? A 10. man carries a b can of the case that encircles a site with radu The high and the makes at the complete revolution Supporters hole in the can of paint and 3 of paint as stadily out of the can during thema's ascent How much work is done by the man against gravity in diming to the top -Ibs If F =< P, Q, R > is a vector field in R, P, Qy, Rz all exist, then the divergence of F is defined by: URGENT :)) PLS HELP!(Q4)Given Matrix A consisting of 3 rows and 2 columns. Row 1 shows 3 and negative 1, row 2 shows 2 and 0, and row 3 shows negative 3 and 3. and Matrix B consisting of 3 rows and 2 columns. Row 1 shows 3 and 3, row 2 shows negative 5 and 4, and row 3 shows negative 4 and 2.,what is A B? a) Matrix consisting of 3 rows and 2 columns. Row 1 shows 0 and negative 4, row 2 shows negative 3 and negative 4, and row 3 shows 1 and 1.b) Matrix consisting of 3 rows and 2 columns. Row 1 shows 0 and negative 4, row 2 shows 7 and negative 4, and row 3 shows 1 and 1.c) Matrix consisting of 3 rows and 2 columns. Row 1 shows 0 and negative 4, row 2 shows 7 and 4, and row 3 shows negative 1 and 0.d) Matrix consisting of 3 rows and 2 columns. Row 1 shows 6 and 2, row 2 shows 7 and 4, and row 3 shows negative 7 and 1. A small circular hole 6.00 mm in diameter is cut in the sideof a large water tank, 14.0 m below the water level in the tank.The top of the tank is open to the air.What is the speed of efflux?What is the volume discharged per unittime? Who are the main characters in the story? The Center of the City There are eleven shirts in your closet, four blue, four green, and three red. You randomly select one to wear. It is blue or green. Why is convergent evolution a problem for phylogeny estimation? A telephone message that is organized and logical demonstrates ____.A. CohesivenessB. CourtesyC. CompletenessD. Conciseness a u.s. firm prioritizes opportunities and values individualism. during a negotiation with a global firm that values collectivism and collaboration, a u.s. manager realizes that the negotiators may be discriminating against the u.s. team because of its different culture. what phenomenon is the u.s. manager experiencing? a. out-group b. uncertainty avoidance c. convergence d. power distance how did congressional republicans stop andrew johnson from slowing down reconstruction efforts?responsesthey put political pressure on johnson and forced him to support reconstruction bills.they put political pressure on johnson and forced him to support reconstruction bills.they convinced johnson to resign from office and replaced him with a president who supported reconstruction.they convinced johnson to resign from office and replaced him with a president who supported reconstruction.they made deals with johnson to put through some of the bills he wanted in return for supporting reconstruction.they made deals with johnson to put through some of the bills he wanted in return for supporting reconstruction.they convinced lawmakers to vote for reconstruction efforts so johnson could not legally prevent the bills from passing. if a firm's forecasted sales are $250,000 and its break-even sales are $190,000, the margin of safety in dollars is:group of answer choices$440,000.$24,000.$60,000.$190,000.$250,000. The respiratory system is at the (mechanical) equilibrium position in all of the following conditions EXCEPT a) at the end of normal expiration b) when the transrespiratory pressure (alveolar-atmospheric) is zero c) when lung recoil is balanced by chest wall expansion d) when lung volume is at residual volume (RV) e) when the respiratory muscles are relaxed and the airway is open please give 100% correctanswer and Quickly ( i'll give you like )Question * Let R be the region in the first quadrant bounded below by the parabola y = x and above by the line y = 2. Then the value of ff, yx dA is: None of these This option This option 413 This o what wrongs does old major list to prove that man serves his own interest? some of the things he lists are true, while some of them are half-truths taken out of context. still others are outright lies. Until the 1950s, political campaigns were conducted primarilya. Through the mass mediab. Through political party organizationsc. Through quiet appeals to elite electorsd. By individual candidates with very little staff or assistancee. By interest groups