f''(x)=6x+4sin(x)-2e^x,f(0)=3,f'(0)=3
find the particulars anti derivative

Answers

Answer 1

The particular antiderivative of the given differential equation, satisfying the initial conditions, is:

F(x) = x³ - 4sin(x) - 2eˣ + C₁x + 5

To find the particular antiderivative of the given second-order differential equation, we'll first integrate the equation twice.

Given: F''(x) = 6x + 4sin(x) - 2eˣ

First, integrate F''(x) to obtain F'(x):∫(F''(x)) dx = ∫(6x + 4sin(x) - 2eˣ) dx

Using the linear of integration, we get:

F'(x) = 3x² - 4cos(x) - 2eˣ + C₁

Now, integrate F'(x) to obtain F(x):∫(F'(x)) dx = ∫(3x² - 4cos(x) - 2eˣ + C₁) dx

Again, using the linearity of integration, we get:

F(x) = x³ - 4sin(x) - 2eˣ + C₁x + C₂

Now, we can apply the initial conditions to determine the particular antiderivative.

3

Plugging in the values for x = 0 into the equation for F(x), we have:F(0) = 0³ - 4sin(0) - 2e⁰ + C₁(0) + C₂

F(0) = 0 - 0 - 2 + C₂F(0) = -2 + C₂

Since f(0) = 3, we can set -2 + C₂ = 3 and solve for C₂:

C₂ = 3 + 2C₂ = 5

So

Learn more about linear here:

https://brainly.com/question/31510530

#SPJ11


Related Questions

A crane lifts the 18000 kg steel hull of a sunken ship out of the water. Determine the tension in the crane's cable when the hull is fully submerged in the water

Answers

when the hull is fully submerged in the water, the tension in the crane's cable is zero because the weight of the hull is exactly balanced by the buoyant force.

To determine the tension in the crane's cable when the hull is fully submerged in the water, we need to consider the forces acting on the hull.

1. Weight of the hull:

The weight of the hull is given as 18000 kg. The force due to gravity acting on the hull is given by:

Weight = mass × acceleration due to gravity = 18000 kg × 9.8 m/s².

2. Buoyant force:

When the hull is fully submerged in the water, it experiences a buoyant force. The magnitude of the buoyant force is equal to the weight of the water displaced by the hull. According to Archimedes' principle, this buoyant force is equal to the weight of the hull.

Therefore, the buoyant force acting on the hull is also 18000 kg × 9.8 m/s².

The tension in the crane's cable is the difference between the weight of the hull and the buoyant force acting on it, as the cable needs to support the net force:

Tension = Weight - Buoyant force

       = (18000 kg × 9.8 m/s²) - (18000 kg × 9.8 m/s²)

       = 0 N.

to know more about force visit:

brainly.com/question/2193360

#SPJ11

A triangle has sides with lengths of 11 feet, 9 feet,
and 14 feet. Is it a right triangle?

Answers

Step-by-step explanation:

Not a right triangle.

To determine if a triangle is a right triangle, we can apply the Pythagorean theorem. According to the theorem, in a right triangle, the square of the length of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares of the lengths of the other two sides.

Let's calculate:

The given side lengths are:

Side A: 11 feet

Side B: 9 feet

Side C: 14 feet (hypotenuse)

According to the Pythagorean theorem, if the triangle is a right triangle, then:

Side A^2 + Side B^2 = Side C^2

Substituting the values:

11^2 + 9^2 = 14^2

121 + 81 = 196

202 ≠ 196

Since 202 is not equal to 196, we can conclude that the triangle with side lengths 11 feet, 9 feet, and 14 feet is not a right triangle.

of Use the fourth-order Runge-Kutta subroutine with h=0 25 to approximate the solution to the initial value problem below, at x=1. Using the Taylor method of order 4, the solution to the initia value

Answers

Using the Taylor method of order 4, the solution to the given initial value problem is y(x) = x - x²/2 + x³/6 - x⁴/24 for Runge-Kutta subroutine.

Given initial value problem is,
y' = x - y
y(0) = 1

Using fourth-order Runge-Kutta method with h=0.25, we have:

Using RK4, we get:
k1 = h f(xn, yn) = 0.25(xn - yn)
k2 = h f(xn + h/2, yn + k1/2) = 0.25(xn + 0.125 - yn - 0.0625(xn - yn))
k3 = h f(xn + h/2, yn + k2/2) = 0.25(xn + 0.125 - yn - 0.0625(xn + 0.125 - yn - 0.0625(xn - yn)))
k4 = h f(xn + h, yn + k3) = 0.25(xn + 0.25 - yn - 0.0625(xn + 0.125 - yn - 0.0625(xn + 0.125 - yn - 0.0625(xn - yn))))
y_n+1 = y_n + (k1 + 2k2 + 2k3 + k4)/6

At x = 1,

n = (1-0)/0.25 = 4
y1 = y0 + (k1 + 2k2 + 2k3 + k4)/6
k1 = 0.25(0 - 1) = -0.25
k2 = 0.25(0.125 - (1-0.25*0.25)/2) = -0.2421875
k3 = 0.25(0.125 - (1-0.25*0.125 - 0.0625*(-0.2421875))/2) = -0.243567
k4 = 0.25(0.25 - (1-0.25*0.25 - 0.0625*(-0.243567) - 0.0625*(-0.2421875))/1) = -0.255946

y1 = 1 + (-0.25 + 2*(-0.2421875) + 2*(-0.243567) + (-0.255946))/6 = 0.78991

Thus, using fourth-order Runge-Kutta method with h=0.25, we have obtained the approximate solution of the given initial value problem at x=1.

Using the Taylor method of order 4, the solution to the initial value problem is given by the formula,
[tex]y(x) = y0 + f0(x-x0) + f0'(x-x0)(x-x0)/2! + f0''(x-x0)^2/3! + f0'''(x-x0)^3/4! + ........[/tex]

where
y(x) = solution to the initial value problem
y0 = initial value of y

f0 = f(x0,y0) = x0 - y0
f0' = ∂f/∂y = -1

[tex]f0'' = ∂^2f/∂y^2 = 0\\f0''' = ∂^3f/∂y^3 = 0[/tex]

Therefore, substituting these values in the above formula, we get:
[tex]y(x) = 1 + (x-0) - (x-0)^2/2! + (x-0)^3/3! - (x-0)^4/4![/tex]

Simplifying, we get:
[tex]y(x) = x - x^2/2 + x^3/6 - x^4/24[/tex]

Thus, using the Taylor method of order 4, the solution to the given initial value problem is[tex]y(x) = x - x^2/2 + x^3/6 - x^4/24[/tex].


Learn more about Runge-kutta here:

https://brainly.com/question/31854918


#SPJ11

Which of the following expresses 1-5+25 - 125 + 625 in sigma notation? 5 4 2 k 2 2. Σ (-5)* -1 b. Σ (-1)*(6)* c. (- 17** 1(5)*+2 k= 1 k=0 k= -2 Choose the correct answer below. Select all that apply. 5 ΠΑ. Σ (-5)* -1 k1 4 B. (-1*(5* k=0 2 c. (-1)** 1(5)*+2 K-2 Evaluate the following sums. 16 16 16 k=1 k=1 k=1 16 k1 (Type an integer or a simplified fraction.) Express the limit as a definite integral. п lim Axx, where P is a partition of [5,111 IPL-01 BEBE The definite integral is Express the limit as a definite integral. ח lim 7.AXk, where is a partition of [- 8, 2] IP-01 The definite integral is lo

Answers

Among the all given options, option (B)  [tex]\sum_{k} (-1) \cdot 6[/tex] is the correct option.

The expression 1−5+25−125+6251−5+25−125+625 can be simplified as follows:

1−5+25−125+625=1−(5−25)+(125−625)=1+20−500=−4791−5+25−125+625=1−(5−25)+(125−625)=1+20−500=−479

To express this sum in sigma notation, we can observe the pattern in the terms:

1=(−1)0⋅54−5=(−1)1⋅5325=(−1)2⋅52−125=(−1)3⋅51625=(−1)4⋅501−525−125625=(−1)0⋅54=(−1)1⋅53=(−1)2⋅52=(−1)3⋅51=(−1)4⋅50

We can see that the exponent of −1−1 increases by 1 with each term, while the exponent of 5 decreases by 1 with each term. Therefore, the expression can be written as:

[tex]\sum_{k=0}^{4} (-1)^k \cdot 5^{4-k}[/tex]

Among the given options, option (B)

[tex]\sum_{k} (-1) \cdot 6[/tex] is the correct option.

To learn more about sigma notation, refer to the link:

https://brainly.com/question/30518693

#SPJ4

Data for motor vehicle production in a country for the years 1997 to 2004 are given in the table. 1997 1998 1999 2000 2001 2002 2003 2004 Thousands 1,537 1,628 1,805 2,009 2,391 3,251 4,415 5,071 Year (A) Find the least squares line for the data, using x=0 for 1990, (Use integers or decimals for any numbers in the expression. Do not round until the final answer. Then round to the nearest tenth

Answers

To find the least squares line for the given data, we'll use the least squares regression method. Let's denote the year as x and the number of motor vehicle productions as y.

We need to calculate the slope (m) and the y-intercept (b) of the least squares line, which follow the formulas: m = (nΣxy - ΣxΣy) / (nΣx^2 - (Σx)^2). m  = (Σy - mΣx) / n. where n is the number of data points (in this case, 8), Σxy is the sum of the products of x and y, Σx is the sum of x values, Σy is the sum of y values, and Σx^2 is the sum of squared x values. Using the given data: Year (x): 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004. Motor Vehicle Production (y): 1537, 1628, 1805, 2009, 2391, 3251, 4415, 5071. We can calculate the following sums: Σx = 1997 + 1998 + 1999 + 2000 + 2001 + 2002 + 2003 + 2004= 16024. Σy = 1537 + 1628 + 1805 + 2009 + 2391 + 3251 + 4415 + 5071 = 24107.  Σxy = (1997 * 1537) + (1998 * 1628) + (1999 * 1805) + (2000 * 2009) + (2001 * 2391) + (2002 * 3251) + (2003 * 4415) + (2004 * 5071)= 32405136. Σx^2 = 1997^2 + 1998^2 + 1999^2 + 2000^2 + 2001^2 + 2002^2 + 2003^2 + 2004^2 = 31980810

Now, we can calculate the slope (m) and the y-intercept (b):m = (nΣxy - ΣxΣy) / (nΣx^2 - (Σx)^2)= (8 * 32405136 - 16024 * 24107) / (8 * 31980810 - 16024^2)≈ 543.6  . b = (Σy - mΣx) / n= (24107 - 543.6 * 16024) / 8

≈ -184571.2 . Therefore, the least squares line for the data is approximately y = 543.6x - 184571.2.

To Learn more about least squares line click here : brainly.com/question/30403468

#SPJ11

Find the absolute extrema of the function on the closed
interval.
f(x) = 3x/(x^2+9), [−4, 4]

Answers

To find the absolute extrema of the function f(x) = 3x/(x^2+9) on the closed interval [−4, 4], we need to evaluate the function at its critical points and endpoints and compare their values. Answer :  the absolute maximum value is 1 at x = 3, and the absolute minimum value is -1 at x = -3

1. Critical points:

Critical points occur where the derivative of the function is either zero or undefined. Let's find the derivative of f(x) first:

f(x) = 3x/(x^2+9)

Using the quotient rule, the derivative is:

f'(x) = (3(x^2+9) - 3x(2x))/(x^2+9)^2

      = (3x^2 + 27 - 6x^2)/(x^2+9)^2

      = (-3x^2 + 27)/(x^2+9)^2

To find critical points, we set f'(x) = 0:

-3x^2 + 27 = 0

3x^2 = 27

x^2 = 9

x = ±3

The critical points are x = -3 and x = 3.

2. Endpoints:

Next, we evaluate the function at the endpoints of the interval [−4, 4].

f(-4) = (3(-4))/((-4)^2+9) = -12/25

f(4) = (3(4))/((4)^2+9) = 12/25

3. Evaluate the function at critical points:

f(-3) = (3(-3))/((-3)^2+9) = -3/3 = -1

f(3) = (3(3))/((3)^2+9) = 3/3 = 1

Now, we compare the function values at the critical points and endpoints to determine the absolute extrema:

The maximum value is 1 at x = 3.

The minimum value is -1 at x = -3.

The function is continuous on the closed interval, so the absolute extrema occur at the critical points and endpoints.

Therefore, the absolute maximum value is 1 at x = 3, and the absolute minimum value is -1 at x = -3.

Learn more about  derivative  : brainly.com/question/29144258

#SPJ11


please do these 3 multiple choice questions, no work or explanation
is required just answers are pwrfect fine, will leave a like for
sure!
Question 6 (1 point) Which of the following determines a plane? O two parallel, non-coincident lines a line and a point not on the line all of the above two intersecting lines O
Question 7 (1 point)

Answers

All of the options mentioned (two parallel, non-coincident lines; a line and a point not on the line; two intersecting lines) can determine a plane.

What is a line?

A line is a straight path that consists of an infinite number of points. A line can be defined by two points, and it is the shortest path between those two points. In terms of geometry, a line has no width or thickness and is considered one-dimensional.

A plane can be determined by any of the following:

Two parallel, non-coincident lines: If two lines are parallel and do not intersect, they lie on the same plane.

A line and a point not on the line: If a line and a point exist in three-dimensional space, they determine a unique plane.

Two intersecting lines: If two lines intersect, they determine a plane containing both lines.

Therefore, all of the given options can determine a plane.

To learn more about a line  refer here

brainly.com/question/13763238

#SPJ4

Solve triangle ABC if A = 48°, a = 17.4 m and b = 39.1 m"

Answers

Triangle ABC is given with angle A = 48°, side a = 17.4 m, and side b = 39.1 m. We can solve the triangle using the Law of Sines and Law of Cosines.

To solve triangle ABC, we can use the Law of Sines and Law of Cosines. Let's label the angles as A, B, and C, and the sides opposite them as a, b, and c, respectively.

1. Law of Sines: The Law of Sines states that the ratio of the length of a side to the sine of its opposite angle is constant. Using this law, we can find angle B:

  sin(B) = (b / sin(A)) * sin(B)

  sin(B) = (39.1 / sin(48°)) * sin(B)

  B ≈ sin^(-1)((39.1 / sin(48°)) * sin(48°))

 B ≈ 94.43°

2. Law of Cosines: The Law of Cosines relates the lengths of the sides of a triangle to the cosine of one of its angles. Using this law, we can find side c:

  c^2 = a^2 + b^2 - 2ab * cos(C)

 c^2 = a^2 + b^2 - 2ab*cos(C)

 c^2 = 17.4^2 + 39.1^2 - 2 * 17.4 * 39.1 * cos(48°)

 c ≈ 37.6 m

Now we can substitute the known values and calculate the missing angle B and side c.

Finding angle C:

Since the sum of angles in a triangle is 180°:

C = 180° - A - B

C ≈ 180° - 48° - 94.43°

C ≈ 37.57°

Therefore, the solution for triangle ABC is:

Angle A = 48°, Angle B ≈ 94.43°, Angle C ≈ 37.57°

Side a = 17.4 m, Side b = 39.1 m, Side c ≈ 37.6 m

To learn more about  Triangle Click Here: brainly.com/question/2773823

#SPJ11

Find the volume of the region that is defined as 2 x + 22 – 2 sy s -x – z +1, z 2 0 and x > 0 by evaluating the following integral. 1 1-2 -X-z+1 v=ZLT dy de de V dx dz z=0 x=0 y=2 x+2 z-2 a. First

Answers

integrate with respect to z:

V = ∫(0 to 2) [((1 + 2x + 2z - 2)² / 2) - 2(-x - z + 1)²] (2 - 2z) dz

Evaluating this integral will give you the volume of the region defined by the given integral.

To find the volume of the region defined by the given integral, we need to evaluate the triple integral:

V = ∭1-2(-x-z+1) dy dx dz

First, let's consider the limits of integration:

For z, the integral is defined from z = 0 to z = 2.For x, the integral is defined from x = 0 to x = 2 - 2z.

For y, the integral is defined from y = 1 - 2(-x - z + 1) to y = 2.

Now, let's set up the integral:

V = ∫(0 to 2) ∫(0 to 2 - 2z) ∫(1 - 2(-x - z + 1) to 2) 1-2(-x-z+1) dy dx dz

To simplify the integral, let's simplify the limits of integration for y:

The lower limit for y is 1 - 2(-x - z + 1) = 1 + 2x + 2z - 2.The upper limit for y is 2.

Now, the integral becomes:

V = ∫(0 to 2) ∫(0 to 2 - 2z) ∫(1 + 2x + 2z - 2 to 2) 1-2(-x-z+1) dy dx dz

Next, we integrate with respect to y:

V = ∫(0 to 2) ∫(0 to 2 - 2z) (2 - (1 + 2x + 2z - 2))(1-2(-x-z+1)) dx dz

Simplifying:

V = ∫(0 to 2) ∫(0 to 2 - 2z) (1 + 2x + 2z - 2)(1-2(-x-z+1)) dx dz

Now, we integrate with respect to x:

V = ∫(0 to 2) [((1 + 2x + 2z - 2)² / 2) - 2(-x - z + 1)²] (2 - 2z) dz

Learn more about integrate here:

https://brainly.com/question/30217024

#SPJ11

a. find the indicated sets. 1. P({{a,b},{c}}). 2. P({1,2,3,4}).

Answers

The power set of {1,2,3,4} will be the set of all subsets which can be formed from these four elements. Therefore, P({1,2,3,4}) = {∅,{1},{2},{3},{4},{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},{1,2,3},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4}}.

Given set is: a. 1. P({{a,b},{c}}).2. P({1,2,3,4}).Solution:1. Power set of {{a,b},{c}} is given by P({{a,b},{c}}).

The given set {{a,b},{c}} is a set which has two subsets {a,b} and {c}.

Therefore, the power set of {{a,b},{c}} will be the set of all subsets which can be formed from {a,b} and {c}.

Therefore, P({{a,b},{c}}) = {∅,{{a,b}},{c},{{a,b},{c}}}.2. Power set of {1,2,3,4} is given by P({1,2,3,4}).

The given set {1,2,3,4} is a set which has four elements 1, 2, 3, and 4.

Therefore, the power set of {1,2,3,4} will be the set of all subsets which can be formed from these four elements.

Therefore, P({1,2,3,4}) = {∅,{1},{2},{3},{4},{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},{1,2,3},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4}}.

Learn more about subsets  here:

https://brainly.com/question/28705656

#SPJ11

(8 points) Find the maximum and minimum values of f(x,y) = 4x + y on the ellipse x2 + 4y2 = 1 maximum value: minimum value:

Answers

Maximum of f is 5/2(√3.2) = 4.686  and Minimum of f is −1/2(√3.2) = −1.686

1: Let g(x,y) = x2 + 4y2 − 1

2: Using Lagrange multipliers, set up the system of equations

                             ∇f = λ∇g

                              4 = 2λx

                               1 = 8λy

3: Solve for λ

                             8λy = 1

                                 λ = 1/8y

4: Substitute λ into 2λx to obtain 2(1/8y)x = 4

                         => x = 4/8y

5: Substitute x = 4/8y into x2 + 4y2 = 1

               => 16y2/64 + 4y2 = 1

               => 20y2 = 64

               => y2 = 3.2

6: Find the maximum and minimum of f.

               => Maximum: f(x,y) = 4x + y

                         = 4(4/8y) + y = 4 + 4/2y = 5/2y

               => Maximum of f is 5/2(√3.2) = 4.686

               => Minimum: f(x,y) = 4x + y

                          = 4(−4/8y) + y = −4 + 4/2y = −1/2y

             => Minimum of f is −1/2(√3.2) = −1.686

To know more about maximum refer here:

https://brainly.com/question/27925558#

#SPJ11

The left-field wall in Fenway Park in Boston is 315 ft from home plate and is 37 ft high. (a) Can a baseball hit with an initial speed of 125 ft/sec clear the wall? What angle is required to do this? (b) What is the smallest initial velocity that will produce a home run?

Answers

a. To find the angle required, we can use the equation:

tan(theta) = v₀y / v₀x

b. In this case, we need to find the minimum initial velocity (v₀) that allows the baseball to clear the wall ([tex]h_{max[/tex] > 37 ft).

What is projectile motion?

Such a particle's motion and trajectory are both referred to as projectile motion. Two distinct rectilinear motions occur simultaneously in a projectile motion: Uniform velocity along the x-axis is what causes the particle to move horizontally (ahead).

To solve this problem, we can use the equations of projectile motion. Let's break it down into two parts:

(a) We need to determine if the baseball can clear the wall, which means it must reach a height higher than 37 ft. We can use the following equations:

Vertical motion:

y = y₀ + v₀y*t - (1/2)gt²

Horizontal motion:

x = v₀x*t

where:

y₀ = initial vertical position (0 ft)

v₀y = initial vertical component of velocity

g = acceleration due to gravity (-32.2 ft/sec²)

t = time

x = horizontal position (315 ft)

v₀x = initial horizontal component of velocity

Given:

v₀ = 125 ft/sec

y = 37 ft

First, we need to find the time it takes for the baseball to reach its maximum height. At the highest point, the vertical velocity will be zero. Using the equation v = v₀y - gt, we have:

0 = v₀y - [tex]gt_{max[/tex]

[tex]t_{max[/tex] = v₀y / g

Using [tex]t_{max[/tex], we can find the maximum height ([tex]h_{max[/tex] reached by the baseball:

[tex]h_{max[/tex] = y₀ + v₀y * [tex]t_{max[/tex] - (1/2)g * [tex]t_{max}^2[/tex]

Now, we can check if [tex]h_{max[/tex] is greater than 37 ft. If it is, the baseball can clear the wall.

To find the angle required, we can use the equation:

tan(theta) = v₀y / v₀x

Solving for theta will give us the angle required.

(b) In this case, we need to find the minimum initial velocity (v₀) that allows the baseball to clear the wall ([tex]h_{max[/tex] > 37 ft). We can use the same equations as in part (a), but we need to iterate through different initial velocities until we find the minimum velocity that produces a home run.

Learn more about projectile motion on:

https://brainly.com/question/10680035

#SPJ4






Use the product rule to find the derivative of (2x4 + 4.2") (7e" + 3) Use ex for e". You do not need to expand out your answer.
Given the equation below, find dy dx - 28x² + 6.228y + y = – 21 dy

Answers

The derivative of (2[tex]x^4[/tex] + 4.2x") * (7ex" + 3) with respect to x is:

dy/dx = (2[tex]x^4[/tex] + 4.2x") * (7e") + (7ex" + 3) * (8[tex]x^3[/tex] + 4.2)

To find the derivative of the given expression, we'll use the product rule. The product rule states that for two functions u(x) and v(x), the derivative of their product is given by:

d(uv)/dx = u * dv/dx + v * du/dx

In this case,

u(x) = 2[tex]x^4[/tex] + 4.2x" and v(x) = 7ex" + 3.

Let's differentiate each function separately and then apply the product rule:

First, let's find du/dx:

du/dx = d/dx(2[tex]x^4[/tex] + 4.2x")

         = 8[tex]x^3[/tex] + 4.2

Next, let's find dv/dx:

dv/dx = d/dx(7ex" + 3)

         = 7e" * d/dx(x") + 0

         = 7e" * 1 + 0

         = 7e"

Now, let's apply the product rule:

d(uv)/dx = (2[tex]x^4[/tex] + 4.2x") * (7e") + (7ex" + 3) * (8[tex]x^3[/tex] + 4.2)

Therefore, the derivative of (2[tex]x^4[/tex] + 4.2x") * (7ex" + 3) with respect to x is:

dy/dx = (2[tex]x^4[/tex] + 4.2x") * (7e") + (7ex" + 3) * (8[tex]x^3[/tex] + 4.2)

Learn more about Derivatives at

brainly.com/question/25324584

#SPJ4

Determine the DEMAND function
A bed and breakfast charges $65 for a room per night, and at this price they regularly occupy 8 rooms. Market research shows that for each $5 raise in price one more room will be vacant.

Answers

The demand function that depict the price and demand would be Qd = -1/5P + 21.

How did we arrive at the demand function?

We know that at a price of $65, 8 rooms are rented. It's also given that for each $5 increase in price, one less room is rented.

Slope = rise/run, our slope is -1/5.

slope = -1/5 because for each increase of $5 (run), there is a decrease of 1 room (rise).  

linear equation ⇒ Qd = mP + b

Qd = quantity demanded

P = price

m = slope of the demand curve

b = y-intercept

8 = -1/5 × 65 + b

8 = -13 + b

b = 8 + 13

b = 21

Therefpre demand function⇒ Qd = -1/5P + 21.

Find more exercises on demand function;

https://brainly.com/question/28198225

#SPJ1

a flashlight battery manufacturer makes a model of battery whose mean shelf life is three years and four months, with a standard deviation of three months. the distribution is approximately normal. one production run of batteries in the factory was 25,000 batteries. how many of those batteries can be expected to last between three years and one month and three years and seven months?the is the average value of a set of numerical data, found by adding all the values and dividing by the number of elements in the set.

Answers

The number of batteries expected to last between three years and one month and three years and seven months, is 12,500 batteries.

Given that the mean shelf life of the flashlight batteries is three years and four months and the standard deviation is three months.

To find the number of batteries that can be expected to last between three years and one month (3.08 years) and three years and seven months (3.58 years), we need to calculate the probability within this range.

First, we convert the given time intervals to years:

Three years and one month = 3.08 years

Three years and seven months = 3.58 years

Next, we calculate the z-scores for these values using the formula:

z = (x - μ) / σ

For 3.08 years:

z1 = (3.08 - 3.33) / 0.25 = -1

For 3.58 years:

z2 = (3.58 - 3.33) / 0.25 = 1

Now, we can use the standard normal distribution table or a calculator to find the probabilities corresponding to these z-scores.

The probability of a value falling between -1 and 1 is the difference between the two probabilities.

Let's assume that the distribution is symmetric, so half of the batteries would fall within this range.

Therefore, the number of batteries that can be expected to last between three years and one month and three years and seven months is approximately:

Number of batteries = 0.5 × Total number of batteries = 0.5 × 25,000 = 12,500 batteries.

Learn more about Standard Deviation here:

https://brainly.com/question/475676

#SPJ11








8) A particle is moving with the given data a(t) = 2cos(3t) - sin(4t). s(0)=0 and v(0)=1

Answers

The position function of the particle is given by s(t) = 2/3sin(3t) + 1/4cos(4t) + C, where C is the constant of integration.

To find the position function, we need to integrate the acceleration function a(t). The integral of 2cos(3t) with respect to t is (2/3)sin(3t), and the integral of -sin(4t) with respect to t is (-1/4)cos(4t). Adding the two results together, we get the antiderivative of a(t).

Since we are given that s(0) = 0, we can substitute t = 0 into the position function and solve for C:

s(0) = (2/3)sin(0) + (1/4)cos(0) + C = 0

C = 0 - 0 + 0 = 0

Therefore, the position function of the particle is s(t) = 2/3sin(3t) + 1/4cos(4t).

Given that v(0) = 1, we can find the velocity function by taking the derivative of the position function with respect to t:

v(t) = (2/3)(3)cos(3t) - (1/4)(4)sin(4t)

v(t) = 2cos(3t) - sin(4t)

Thus, the velocity function of the particle is v(t) = 2cos(3t) - sin(4t).

To learn more about integration click here

brainly.com/question/31744185

#SPJ11


need answered ASAP Written as clearly as possible
I 3) Pick a positive integer a and consider the function f(x) C-a a) Find f'(x) and f"(x). b) Find all vertical and horizontal asymptotes of f(x). c) Find all intervals where f(x) is increasing/decrea

Answers

a) f'(x) = -1 / (2√(3 - x)).

f"(x) = 1 / (2(3 - x)^(3/2)).

b) There are no vertical asymptotes.

The horizontal asymptote is y = 0.

c) f(x) is a decreasing function for all values of x.

We have,

To provide a specific solution, let's choose the positive integer a as 3.

a)

Find f'(x) and f"(x):

Given that f(x) = √(3 - x), we can find the derivative f'(x) using the chain rule:

f'(x) = d/dx [√(3 - x)]

[tex]= (1/2) \times (3 - x)^{-1/2} \times (-1)[/tex]

= -1 / (2√(3 - x)).

To find the second derivative f"(x), we differentiate f'(x) with respect to x:

f"(x) = d/dx [-1 / (2√(3 - x))]

= -1 x (-1/2) x (3 - x)^(-3/2) x (-1)

[tex]= 1 / (2(3 - x)^{3/2}).[/tex]

b)

Find all vertical and horizontal asymptotes of f(x):

To find the vertical asymptotes, we need to determine the values of x where the denominator of f'(x) and f"(x) becomes zero.

However, in this case, both f'(x) and f"(x) do not have any denominators, so there are no vertical asymptotes.

To find the horizontal asymptote, we can evaluate the limit as x approaches positive or negative infinity:

lim(x→∞) f(x) = lim(x→∞) √(3 - x)

= √(-∞)

= 0.

lim(x→-∞) f(x) = lim(x→-∞) √(3 - x)

= √(∞)

= ∞.

Therefore, the horizontal asymptote is y = 0 as x approaches positive infinity, and there is no horizontal asymptote as x approaches negative infinity.

c)

Find all intervals where f(x) is increasing/decreasing:

To determine the intervals of increasing and decreasing, we can examine the sign of the derivative f'(x).

f'(x) = -1 / (2√(3 - x)).

The denominator of f'(x) is always positive, so the sign of f'(x) depends on the numerator, which is -1.

When -1 < 0, f'(x) < 0, indicating a decreasing function.

Therefore, f(x) is a decreasing function for all values of x.

Thus,

a) f'(x) = -1 / (2√(3 - x)).

f"(x) = 1 / (2(3 - x)^(3/2)).

b) There are no vertical asymptotes.

The horizontal asymptote is y = 0.

c) f(x) is a decreasing function for all values of x.

Learn more about functions here:

https://brainly.com/question/28533782

#SPJ12

Answer:

THE ANSWER IS A

Step-by-step explanation:

took the quiz on edge , got a 100%

"Fill in the blanks with perfect squares to
approximate the square root of 72.
sqrt[x] < sqrt90

Answers

The perfect squares 64 and 81 allows us to estimate the square root of 72 while satisfying the condition of being less than the square root of 90.

The square root of 72 is approximately 8.485, while the square root of 90 is approximately 9.49. To find a perfect square that lies between these two values, we can consider the perfect squares that are closest to them. The perfect square less than 72 is 64, and its square root is 8. The perfect square greater than 72 is 81, and its square root is 9. Since the square root of 72 falls between 8 and 9, we can use these values as approximations. This means that the square root of 72 is approximately √64, which is 8.

By choosing 64 as our approximation, we ensure that the square root of 72 is less than the square root of 90. It's important to note that this is an approximation, and the actual square root of 72 is an irrational number that cannot be expressed exactly as a fraction or a terminating decimal. Nonetheless, using the perfect squares 64 and 81 allows us to estimate the square root of 72 while satisfying the condition of being less than the square root of 90.

Learn more about perfect squares here:

https://brainly.com/question/13521012

#SPJ11







For the function f(x,y) = 5x°-y5 - 2, find of and дх ele 11

Answers

The partial derivative of f(x, y) = [tex]5x^9 - y^5[/tex] - 2 with respect to x (∂f/∂x) is 45[tex]x^8[/tex], and the partial derivative with respect to y (∂f/∂y) is -5[tex]y^4[/tex].

To find the partial derivative of a multivariable function with respect to a specific variable, we differentiate the function with respect to that variable while treating the other variables as constants.

Let's start by finding the partial derivative ∂f/∂x of f(x, y) = [tex]5x^9 - y^5[/tex] - 2 with respect to x.

To differentiate [tex]x^9[/tex] with respect to x, we apply the power rule, which states that the derivative of [tex]x^n[/tex] with respect to x is n[tex]x^{n-1}[/tex].

Therefore, the derivative of 5[tex]x^9[/tex] with respect to x is 45[tex]x^8[/tex].

Since [tex]y^5[/tex] and the constant term -2 do not involve x, their derivatives with respect to x are zero.

Thus, ∂f/∂x = 45[tex]x^8[/tex].

Next, let's find the partial derivative ∂f/∂y of f(x, y). In this case, since -[tex]y^5[/tex] and -2 do not involve y, their derivatives with respect to y are zero.

Therefore, ∂f/∂y = -5[tex]y^4[/tex].

In summary, the partial derivative of f(x, y) = 5[tex]x^9[/tex] - [tex]y^5[/tex] - 2 with respect to x is ∂f/∂x = 45[tex]x^8[/tex], and the partial derivative with respect to y is ∂f/∂y = -5[tex]y^4[/tex].

Learn more about Derivative here:

https://brainly.com/question/30401596

#SPJ11

The complete question is:

For the function f(x,y) = [tex]5x^9 - y^5[/tex] - 2, find ∂f/∂x and ∂f/∂y.

Find all points on the graph of y^3-27y = x^2-90 at which the tangent line is vertical. (Order your answers from smallest to largest x, then from smallest to largest y.) (x, y) = (_____)
(x, y) = (_____)
(x, y) = (_____)
(x, y) = (_____)

Answers

Therefore, the points on the graph where the tangent line is vertical are:

(x, y) = (6, 3)

(x, y) = (-6, 3)

(x, y) = (12, -3)

(x, y) = (-12, -3)

To find the points on the graph where the tangent line is vertical, we need to identify the values of (x, y) that make the derivative of y with respect to x undefined. A vertical tangent line corresponds to an undefined slope.

Given the equation y^3 - 27y = x^2 - 90, we can differentiate both sides of the equation implicitly to find the slope of the tangent line:

Differentiating y^3 - 27y = x^2 - 90 with respect to x:

3y^2 * dy/dx - 27 * dy/dx = 2x.

To find the values where the slope is undefined, we set the derivative dy/dx equal to infinity or does not exist:

3y^2 * dy/dx - 27 * dy/dx = 2x.

(3y^2 - 27) * dy/dx = 2x.

For a vertical tangent line, dy/dx must be undefined, which occurs when (3y^2 - 27) = 0. Solving this equation:

3y^2 - 27 = 0,

3y^2 = 27,

y^2 = 9,

y = ±3.

So, the points where the tangent line is vertical are when y = 3 and y = -3.

Substituting these values of y back into the original equation to find the corresponding x values:

For y = 3:

y^3 - 27y = x^2 - 90,

3^3 - 27(3) = x^2 - 90,

27 - 81 = x^2 - 90,

-54 = x^2 - 90,

x^2 = 36,

x = ±6.

For y = -3:

y^3 - 27y = x^2 - 90,

(-3)^3 - 27(-3) = x^2 - 90,

-27 + 81 = x^2 - 90,

54 = x^2 - 90,

x^2 = 144,

x = ±12.

Ordered from smallest to largest x and then from smallest to largest y:

(x, y) = (-12, -3)

(x, y) = (-6, 3)

(x, y) = (6, 3)

(x, y) = (12, -3)

To know more about tangent line,

https://brainly.com/question/32235145

#SPJ11

Question 7 > Consider the function f(t) = 10 sec² (t) - 7t². Let F(t) be the antiderivative of f(t) with F(0) F(t) = = 0. Then

Answers

The antiderivative F(t) of the function f(t) = 10sec²(t) - 7t² with F(0) = 0 is given by F(t) = 5tan(t) - (7/3)t³ + C, where C is the constant of integration.

To find the antiderivative F(t) of f(t), we need to integrate the function with respect to t. First, let's break down the function f(t) = 10sec²(t) - 7t². The term 10sec²(t) can be expressed as 10(1 + tan²(t)) since sec²(t) = 1 + tan²(t). Thus, f(t) becomes 10(1 + tan²(t)) - 7t².

Now, integrating each term separately, we get:

∫(10(1 + tan²(t)) - 7t²) dt = ∫(10 + 10tan²(t) - 7t²) dt

The integral of 10 with respect to t is 10t, and the integral of 10tan²(t) can be found using the trigonometric identity ∫tan²(t) dt = tan(t) - t. Finally, the integral of -7t² with respect to t is -(7/3)t³.

Combining these results, we have:

F(t) = 5tan(t) - (7/3)t³ + C

Since F(0) = 0, we can substitute t = 0 into the equation and solve for C:

0 = 5tan(0) - (7/3)(0)³ + C

0 = 0 + 0 + C

C = 0

Therefore, the antiderivative F(t) of f(t) with F(0) = 0 is given by F(t) = 5tan(t) - (7/3)t³.

Learn more about  constant of integration :

https://brainly.com/question/29166386

#SPJ11

A plant is 4 inches tall. it grows 5 inches per year. which equation model is the height y of the plant after x years  

Answers

The equation which model the height y of the plant after x years is,

⇒ y = 4 + 5x

We have to given that,

A plant is 4 inches tall.

And, it grows 5 inches per year.

Since, Mathematical expression is defined as the collection of the numbers variables and functions by using operations like addition, subtraction, multiplication, and division.

Now, We can formulate;

The equation which model the height y of the plant after x years is,

⇒ y = 4 + 5 × x

⇒ y = 4 + 5x

Therefore, We get;

The equation which model the height y of the plant after x years is,

⇒ y = 4 + 5x

Learn more about the mathematical expression visit:

brainly.com/question/1859113

#SPJ1

Given the following ANOVA table:
Source df SS MS F
Regression 1 1,300 1,300 34.00
Error 17 650.0 38.24 Total 18 1,950 a. Determine the coefficient of determination. (Round your answer to 3 decimal places.) Coefficient of determination b. Assuming a direct relationship between the variables, what is the correlation coefficient? (Round your answer to 2 decimal places.) Coefficient of correlation b. Assuming a direct relationship between the variables, what is the correlation coefficient? (Round your answer to 2 decimal places.) Coefficient of correlation c. Determine the standard error of estimate. (Round your answer to 2 decimal places.) Standard error of estimate

Answers

(a)The coefficient of determination is approximately 0.667.

(b)The correlation coefficient is approximately 0.82.

(c)The standard error of estimate is approximately 6.18.

What is the regression?

The regression in the given ANOVA table represents the analysis of variance for the regression model. The regression model examines the relationship between the independent variable(s) and the dependent variable.

a)The coefficient of determination, denoted as [tex]R^2[/tex], is calculated as the ratio of the regression sum of squares (SSR) to the total sum of squares (SST). From the given ANOVA table:

SSR = 1,300

SST = 1,950

[tex]R^2 = \frac{SSR}{SST }\\\\= \frac{1,300}{1,950}\\\\ =0.667[/tex]

Therefore, the coefficient of determination is approximately 0.667.

b) Assuming a direct relationship between the variables, the correlation coefficient (r) is the square root of the coefficient of determination ([tex]R^2[/tex]). Taking the square root of 0.667:

[tex]r = \sqrt{0.667}\\r =0.817[/tex]

Therefore, the correlation coefficient is approximately 0.82.

c) The standard error of estimate (SE) provides a measure of the average deviation of the observed values from the regression line. It can be calculated as the square root of the mean square error (MSE) from the ANOVA table.

In the ANOVA table, the mean square error (MSE) is given as 38.24 under the "Error" column.

[tex]SE =\sqrt{MSE}\\\\SE= \sqrt{38.24}\\\\SE=6.18[/tex]

Therefore, the standard error of estimate is approximately 6.18.

To learn more about the regression from the link

https://brainly.com/question/25987747

#SPJ4

Liam left home at 7:50 and drove 175km at an average speed pf 70km per hour. He then stopped for 40 minutes before setting off again, arriving at his destination at 12:30 pm. If Liam averaged 84km per hour for the second part of the journey, what was the total length?

Answers

Liam traveled a total distance of 235 km. He drove 175 km at 70 km/h and 60 km at 84 km/h.

To calculate the total length of Liam's journey, we need to consider both parts separately. In the first part, he drove for a duration of (12:30 pm - 7:50 am) - 40 minutes = 4 hours and 40 minutes. At an average speed of 70 km/h, the distance covered in the first part is 70 km/h * 4.67 h = 326.9 km (approximately 175 km).

In the second part, Liam drove at an average speed of 84 km/h. We know the duration of the second part is the remaining time from 7:50 am to 12:30 pm, which is 4 hours and 40 minutes. Therefore, the distance covered in the second part is 84 km/h * 4.67 h = 392.28 km (approximately 60 km).

The total length of the journey is the sum of the distances from both parts, which is approximately 175 km + 60 km = 235 km.

Learn more about Average speed here: brainly.com/question/10449029

#SPJ11

Identify az3 and 11. if possible. 3 -1 4 -4 2-3 Select the correct choice below and, if necessary, fill in the answer box(es) to complete your choice. OA. 223 and 11 OB. 23 - and 8,4 does not exist. O

Answers

The az3 and 11 cannot be identified from the given sequence.

The sequence provided is: 3, -1, 4, -4, 2, -3. However, there is no obvious pattern or rule that allows us to determine the values of az3 and 11. The sequence does not follow a consistent arithmetic or geometric progression, and there are no discernible relationships between the numbers. Therefore, it is not possible to identify the values of az3 and 11 based on the given information.

learn more about geometric progression here

brainly.com/question/8035493

#SPJ11

2 Evaluate the following Deim (Sin (4.5 kn) + Cos (3 Tn))? T6n+ N- Do n=-N N note - 20

Answers

The answer is the expression: (sin(4.5(-2N)π/9) - sin(4.5(2N+1)π/9))/(1 - sin(4.5π/9)) + (2N + 1).

To evaluate the sum ∑[n=-N to N] (sin(4.5n) + cos(3n)), we can use the properties of trigonometric functions and summation formulas.

First, let's break down the sum into two separate sums: ∑[n=-N to N] sin(4.5n) and ∑[n=-N to N] cos(3n).

Evaluating ∑[n=-N to N] sin(4.5n):

We can use the formula for the sum of a geometric series to simplify this sum. Notice that sin(4.5n) repeats with a period of 2π/4.5 = 2π/9. So, we can rewrite the sum as follows:

∑[n=-N to N] sin(4.5n) = ∑[k=-2N to 2N] sin(4.5kπ/9),

where k = n/2. Now, we have a geometric series with a common ratio of sin(4.5π/9).

Using the formula for the sum of a geometric series, the sum becomes:

∑[k=-2N to 2N] sin(4.5kπ/9) = (sin(4.5(-2N)π/9) - sin(4.5(2N+1)π/9))/(1 - sin(4.5π/9)).

Evaluating ∑[n=-N to N] cos(3n):

Similar to the previous sum, we can rewrite the sum as follows:

∑[n=-N to N] cos(3n) = ∑[k=-2N to 2N] cos(3kπ/3) = ∑[k=-2N to 2N] cos(kπ) = 2N + 1.

Now, we can evaluate the overall sum:

∑[n=-N to N] (sin(4.5n) + cos(3n)) = ∑[n=-N to N] sin(4.5n) + ∑[n=-N to N] cos(3n)

= (sin(4.5(-2N)π/9) - sin(4.5(2N+1)π/9))/(1 - sin(4.5π/9)) + (2N + 1).

In this solution, we are given the sum ∑[n=-N to N] (sin(4.5n) + cos(3n)) and we want to evaluate it.

We break down the sum into two separate sums: ∑[n=-N to N] sin(4.5n) and ∑[n=-N to N] cos(3n).

For the sin(4.5n) sum, we use the formula for the sum of a geometric series, taking into account the periodicity of sin(4.5n). We simplify the sum using the geometric series formula and obtain a closed form expression.

For the cos(3n) sum, we observe that it simplifies to (2N + 1) since cos(3n) has a periodicity of 2π/3.

Finally, we combine the two sums to obtain the overall sum.

Therefore, the main answer is the expression: (sin(4.5(-2N)π/9) - sin(4.5(2N+1)π/9))/(1 - sin(4.5π/9)) + (2N + 1).

To learn more about trigonometric functions, click here: brainly.com/question/25618616

#SPJ11

We have a random sample of 200 students from Duke. We asked all of these students for their GPA and their major, which they responded one of the following: () arts and humanities, (i)
natural sciences, or (il) social sciences.
Which procedure should we use to test whether the mean GPA differs for Duke students, based
on major?

Answers

To test whether the mean GPA differs among Duke students based on their major (Arts and Humanities, Natural Sciences, or Social Sciences), the appropriate procedure to use is a one-way analysis of variance (ANOVA).

The one-way ANOVA is used when comparing the means of three or more groups. In this case, we have three groups based on major: Arts and Humanities, Natural Sciences, and Social Sciences. The objective is to determine if there is a significant difference in the mean GPA among these groups.

By conducting a one-way ANOVA, we can analyze the variability between the means of the different majors and determine if the observed differences are statistically significant. The ANOVA will generate an F-statistic and a p-value, which will indicate whether there is evidence to reject the null hypothesis of no difference in mean GPA among the majors.

It is important to ensure that the assumptions of the one-way ANOVA are met, including the independence of observations, normality of the GPA distribution within each group, and homogeneity of variances across groups.

Violations of these assumptions may require alternative procedures, such as non-parametric tests or transformations of the data, to make valid inferences about the differences in mean GPA among the major groups.

Learn more about F-statistic here:

https://brainly.com/question/31577270

#SPJ11

Benjamin threw a rock straight up from a cliff that was 120 ft above the water. If the height of the rock h, in feet, after t seconds is given by the equation
h= - 16t^2 + 76t + 120. how long will it take for the rock to hit the water?

Answers

The rock will hit the water after approximately 4.75 seconds.

To find the time it takes for the rock to hit the water, we need to determine the value of t when the height h is equal to zero. We can set the equation h = -16t^2 + 76t + 120 to zero and solve for t.

-16t^2 + 76t + 120 = 0

To solve this quadratic equation, we can use factoring, completing the square, or the quadratic formula. In this case, let's use the quadratic formula:

t = (-b ± √(b^2 - 4ac)) / (2a)

Plugging in the values a = -16, b = 76, and c = 120 into the formula, we get:

t = (-76 ± √(76^2 - 4(-16)(120))) / (2(-16))

Simplifying the equation further, we have:

t = (-76 ± √(5776 + 7680)) / (-32)

t = (-76 ± √(13456)) / (-32)

Since we are interested in the time it takes for the rock to hit the water, we discard the negative value:

t ≈ (-76 + √(13456)) / (-32)

Evaluating this expression, we find t ≈ 4.75 seconds. Therefore, it will take approximately 4.75 seconds for the rock to hit the water.


To learn more about quadratic equations click here: brainly.com/question/22364785

#SPJ11

Find the particular solution to dy dx ex if y(2) = 5. - Select one: 1 a. y = 3 **? + b.y = 3x2 + 4 1 4 c. y = In [x] + 5 - In 2 1 d. y = x 10.5

Answers

The particular solution to the given differential equation with the initial condition y(2) = 5 is y = eˣ + (5 - e²). Therefore, the correct option is c.

To find the particular solution to the given differential equation dy/dx = eˣ with the initial condition y(2) = 5, we can integrate both sides of the equation.

∫dy = ∫eˣ dx

Integrating, we get:

y = eˣ + C

where C is the constant of integration. To find the value of C, we can substitute the initial condition y(2) = 5 into the equation:

5 = e² + C

Solving for C, we have:

C = 5 - e²

Substituting this value of C back into the equation, we obtain the particular solution:

y = eˣ + (5 - e²)

So, the correct option is c.

Learn more about differential equation:

https://brainly.com/question/1164377

#SPJ11

Evaluate the integral: f csc²x(cotx-1)³ dx Find the solution to the initial-value problem. y' = x²y-¹/2; y(1) = 1

Answers

The integral ∫(csc^2(x))(cot(x)-1)^3 dx can be evaluated by simplifying the integrand and applying integration techniques. The solution to the initial-value problem y' = x^2y^(-1/2); y(1) = 1 can be found by separating variables and solving the resulting differential equation.

1. Evaluating the integral:

First, simplify the integrand:

(csc^2(x))(cot(x)-1)^3 = (1/sin^2(x))(cot(x)-1)^3

Let u = cot(x) - 1, then du = -csc^2(x)dx. Rearranging, -du = csc^2(x)dx.

Substituting the new variables, the integral becomes:

-∫u^3 du = -1/4u^4 + C, where C is the constant of integration.

So the final solution is -1/4(cot(x)-1)^4 + C.

2. Solving the initial-value problem:

Separate variables in the differential equation:

dy / (y^(-1/2)) = x^2 dx

Integrate both sides:

∫y^(-1/2) dy = ∫x^2 dx

Using the power rule of integration, we get:

2y^(1/2) = (1/3)x^3 + C, where C is the constant of integration.

Applying the initial condition y(1) = 1, we can solve for C:

2(1)^(1/2) = (1/3)(1)^3 + C

2 = 1/3 + C

C = 5/3

Therefore, the solution to the initial-value problem is:

2y^(1/2) = (1/3)x^3 + 5/3

Simplifying further, we have:

y^(1/2) = (1/6)x^3 + 5/6

Taking the square of both sides, we obtain the final solution:

y = ((1/6)x^3 + 5/6)^2

Learn more about integration here:

brainly.com/question/31401227

#SPJ11

Other Questions
write the oxidation state for the underlined element in the box following each compound.a) NaHb) KNO3c) Na2PtCI6d) Ca3(PO3)2e) NA(NCS) robin transferred her 60 percent interest to cardinal company as part of a complete liquidation of the company. in the exchange, she received land with a fair market value of $992,500. robin's basis in the cardinal stock was $1,062,500. the land had a basis to cardinal company of $1,125,000. what amount of loss does cardinal recognize in the exchange and what is robin's basis in the land she receives? the distribution was non-pro rata to robin, a related person. Can someone help me with this question? A Ferris wheel has: a diameter of 80ft, an axel height of 60ft, and completes 3 turns in 1 minute. What would the graph look like? provide the chemical structure for 9-chlorobicyclo 3.3.1 nonane Indicate whether each view follows the traditional (neoclassical) view of money, banking, and capitalist economies, or the heterodox (post Keynesian) view. Deposits into banks create the funds that get loaned out. (deposits create loans) Loans create the money necessary to invest, and therefore to produce and generate an income to deposit into banks. (loans create deposits) 1. Traditional (neoclassical) 2. Heterodox (post Keynesian) The level of investment depends most significantly on expectations ('animal spirits') Money developed through rational, private actors in an attempt to economize on transaction costs Use the binomial series to find a Taylor polynomial of degree 3 for 1 1+ 2.5x T3() = X + 22+ 23 A) Write a balanced equation depicting the formation of one mole of NO2(g) from its elements in their standard states. Express your answer as a chemical equation. Identify all of the phases in your answer.B) Write a balanced equation depicting the formation of one mole of SO3(g) from its elements in their standard states. Express your answer as a chemical equation. Identify all of the phases in your answer.C) Write a balanced equation depicting the formation of one mole of NaBr(s) from its elements in their standard states. Express your answer as a chemical equation. Identify all of the phases in your answer.D) Write a balanced equation depicting the formation of one mole of Pb(NO3)2(s) from its elements in their standard states. Use the form of the definition of the integral given in the theorem to evaluate the integral. [1 + 2x) dx 16. The table below shows all students at a high school taking Language Arts or Geometry courses, broken down by grade level. Language Arts Geometry 9th Grade 68 74 10th Grade 54 47 11th Grade 67 112 12th Grade 49 51 Use this information to answer any questions that follow. Given that the student selected is taking Geometry, what is the probability that he or she is a 12th Grade student? Write your answer rounded to the nearest tenth, percent and fraction. the method of least squares requires that the sum of the squared deviations between actual y values in the scatter diagram and y values predicted by the regression line be minimized. true false what is the most widely respected resource for bacterial identification which nonfreezing cold injury results from exposure to moisture and cold for prolonged periods of time? The points O(0,0,0), P(4,5,2), and Q(6,5,3) lie at three vertices of a parallelogram. Find all possible locations of the fourth vertex.Choose the correct possible vertices below. Select all that apply.A. (10,10,5)B. (-2,0,-1)C. (5,10,10)D. (5,10,10)E. (2,0,1)F. (2,0,1)G. (10,10,5)H. (-2,0,1) Which characteristic best serves to distinguish science from other disciplines? -tentative, reproducible, explanatory, testable, predictive Find the equation of the ellipse that satisfies the following conditions: foci (0,1), vertices (0,+2) foci (+3,0), vertices (+4,0) 1. What are the primary responsibilities of the medical assistant in an orthopedic practice? 2. What clinical skills are required in this specialty practice? 3. What are the common musculoskeletal injuries and disorders that the medical assistant should understand? 4. What diagnostic and treatment procedures typically are used in an orthopedic practice? Set up the integral that would determine the volume of revolution from revolving the region enclosed by y = x (3 - x) and the x-axis about the y-axis. without accurate evaluation of all employees' it is easy to miss a high performing employee who deserves to receive the incentive award. which of the following statements is true regarding infant feeding? multiple choice the american academy of pediatrics recommends exclusive breastfeeding for the first 6 months of a child's life. because of its immunological benefits, infant formula is preferred over breast milk. working mothers should avoid breastfeeding. cows' milk can be introduced safely when the child is 3 months old. Question 5: Read the sentence from paragraph 9.Plants may not be Einsteins nor be able to express themselves in the same manner as animals, butthey are living beings with qualities that are much more similar to their distant relatives than everrealized before!How does the use of the allusion to Einstein advance the author's purpose in this paragraph? Its about plants and animals