g a 100 m3 container with 1/3 water with pressure of 100 MPa drops to 90 Mpa how much heat transfer is required to bring back to the initial condition

Answers

Answer 1

Answer:

 Q = 3.33 108 J

Explanation:

This is an exercise in thermodynamics, specifically isobaric work

        W = V ([tex]P_{f}[/tex]- P₀)

         

They tell us that we have ⅓ of the volume of the container filled with water

        V = ⅓ 100

         V = 33.3 m³

let's calculate

        W = 33.3 (90-100) 10⁶

        W = - 3.33 10⁸ J

To bring the system to its initial condition if we use the first law of thermodynamics

            ΔE  = Q + W

as we return to the initial condition the change of internal energy (ΔE) is zero

          W = -Q

therefore the required heat is

         Q = 3.33 108 J


Related Questions

Please halp
Why does a suspended magnet always rest in the North-South direction?

Answers

Explanation:

because magnet attract opposite sides. like north and south.

Answer:

Its because the magnet has both north and south pole, so when suspended it turns its south pole towards southern hemisphere and the north pole towards northern hemisphere

Hope it helped u,

pls mark as the brainliest

^_^

Figure shows four paths along which objects move from a starting point to a final point, all im the same time interval. The paths pass over a grid of equally spaced straight lines. Rank the paths according to the average velocity of the objects.​

Answers

Answer:

12345678901234567890

What is the speed that is measured in speedometer to track speed violation?

Answers

Answer:

The officer's unit detects this 135-mile-per-hour speed and should subtract the patrol car's 70-mile -per-hour ground speed to get your true speed of 65 miles per hour. Instead, the officer's ground-speed beam fixes on the truck ahead and measures a false 50-mile-per-hour ground speed.

Explanation:

A speedometer or speed meter is a gauge that measures and displays the instantaneous speed of a vehicle. Now universally fitted to motor vehicles, they started to be available as options in the early 20th century, and as standard equipment from about 1910 onwards.

How should the mass of a harmonic oscillator be changed to double the frequency? Can the frequency be tripled by a suitable adjustment of the mass?

Answers

Answer:

a. [tex]m' = \frac{m}{4}[/tex]

b. [tex]m' = \frac{m}{9}[/tex]

Explanation:

The frequency of a harmonic oscillator is given by the following formula:

[tex]\omega = \sqrt{\frac{k}{m}}[/tex]   ----------------- equation (1)

a.

In order to double the frequency of this oscillator:

ω' = 2ω

m' = ?

Therefore,

[tex]\omega ' = 2\omega = \sqrt{\frac{k}{m'}}[/tex]

using equation (1):

[tex]2 \sqrt{\frac{k}{m}} = \sqrt{\frac{k}{m'}}\\\\ \frac{4}{m} = \frac{1}{m'}[/tex]  

[tex]m' = \frac{m}{4}[/tex]

a.

In order to triple the frequency of this oscillator:

ω' = 3ω

m' = ?

Therefore,

[tex]\omega ' = 3\omega = \sqrt{\frac{k}{m'}}[/tex]

using equation (1):

[tex]3\sqrt{\frac{k}{m}} = \sqrt{\frac{k}{m'}}\\\\ \frac{9}{m} = \frac{1}{m'}[/tex]  

[tex]m' = \frac{m}{9}[/tex]

A) To double the Frequency of a harmonic oscillator ;

Divide the mass by four       i.e. m₁ = m / 4

B) To triple the frequency of a harmonic oscillator :

Divide the mass by nine (9)     i.e.  m₂ = m / 9

Given that The frequency of a harmonic oscillator is expressed as  

[tex]w = \sqrt{\frac{k}{m} }[/tex]  -- ( 1 )

A) Doubling the frequency

[tex]2w = \sqrt{\frac{k}{m_{1} } }[/tex]  ---- ( 2 )

Applying equation ( 1 ) and ( 2 )

[tex]2\sqrt{\frac{k}{m} } = \sqrt{\frac{k}{m_{1} } }[/tex]

squaring both sides

( 4 / m )  =  1 / m₁

∴ m₁ ( new mass ) = m / 4

B) Tripling the frequency

3w = [tex]\sqrt{\frac{k}{m_{2} } }[/tex]    ---- ( 3 )

applying equation ( 1 ) and ( 3 )

[tex]3 \sqrt{\frac{k}{m} } = \sqrt{\frac{k}{m_{2} } }[/tex]  

squaring both sides

( 9 / m ) =  1 / m₂

m₂ = m / 9

Hence we can conclude that To double the Frequency of a harmonic oscillator   m₁ = m / 4  and To triple the frequency of a harmonic oscillator : m₂ = m / 9

Learn more : https://brainly.com/question/20050933

a planet has been detected in a circular orbit around the star Rho1 Cancri with an orbital radius equal to 1.65 x 10^10 m. the orbital period of this planet is approximately 14.5 days which is the approximate mass of the star pho1 cancri

Answers

Answer:

Approximately [tex]1.69 \times 10^{30}\; \rm kg[/tex].

Explanation:

Deduction of the formula

Let [tex]M[/tex] and [tex]m[/tex] denote the mass of the star and the planet, respectively.

Let [tex]G[/tex] denote the constant of universal gravitation ([tex]G \approx 6.67408 \times 10^{-11}\; \rm m^{3} \cdot kg^{-1}\cdot s^{-2}[/tex].)

Let [tex]r[/tex] denote the orbital radius of this planet (assuming that [tex]r\![/tex] is constant.) The question states that [tex]r = 1.65 \times 10^{10}\; \rm m[/tex].

The size of gravitational attraction of the star on this planet would be:[tex]\displaystyle \frac{G \cdot M \cdot m}{r^{2}}[/tex].

If attraction from the star is the only force on this planet, the net force on this planet would be [tex]\displaystyle \frac{G \cdot M \cdot m}{r^{2}}[/tex].

Let [tex]\omega[/tex] denote the angular velocity of this planet as it travels along its circular orbit around the star. The size of [tex]\omega\![/tex] could be found from the period [tex]T[/tex] of each orbit: [tex]\omega = (2\, \pi) / T[/tex].

In other words, this planet of mass [tex]m[/tex] is in a circular motion with radius [tex]r[/tex] and angular velocity [tex]\omega[/tex]. Therefore, the net force on this planet should be equal to [tex]m \cdot \omega^2 \cdot r[/tex].

Hence, there are two expressions for the net force on this planet:

[tex]\text{Net Force} = \displaystyle \frac{G \cdot M \cdot m}{r^{2}}[/tex] from universal gravitation, and[tex]\displaystyle \text{Net Force} = m \cdot \omega^2 \cdot r = {\left(\frac{2\pi}{T}\right)}^{2} m \cdot r[/tex] from circular motion.

Equate the right-hand side of these two equations:

[tex]\displaystyle \frac{G \cdot M \cdot m}{r^2} = {\left(\frac{2\pi}{T}\right)}^{2}\, m \cdot r[/tex].

Simplify this equation and solve for [tex]M[/tex], the mass of the star:

[tex]\displaystyle M = \frac{{(2\pi / T)}^2 \cdot r^3}{G}[/tex].

Notice that [tex]m[/tex], the mass of the planet, was eliminated from the equation. That explains why this question could be solved without knowing the exact mass of the observed planet.

Actual Calculations

Convert the orbital period of this star to standard units:

[tex]\begin{aligned}T &= 14.5\; \text{day} \times \frac{24\; \text{hour}}{1\; \text{day}} \times \frac{3600\; \text{second}}{1\; \text{hour}} \\ & = 1.2528 \times 10^{6}\; \rm \text{second}\end{aligned}[/tex].

Calculate the mass of the star:

[tex]\begin{aligned} M &= \frac{{(2\pi / T)}^2 \cdot r^3}{G} \\ &\approx \frac{\displaystyle {\left(\frac{2\pi}{1.2528 \times 10^{6}\; \rm s}\right)}^{2} \times \left(1.65 \times 10^{10}\; \rm m\right)^{3}}{6.67408 \times 10^{-11}\; \rm m^{3}\cdot kg^{-1} \cdot s^{-2}}\\ &\approx 1.69 \times 10^{30}\; \rm kg\end{aligned}[/tex].

A force of 100 newtons Is applled to a box at an angle of 36° with the horizontal. If the mass of the box Is 25 kilograms, what Is the horizontal

Answers

Horizontal component of force = 100cos(36)= 80.9 N

A child blows a leaf from rest straight up in the air. the leaf has a constant upward acceleration of magnitude 1.0 m by s square. how much time does it take the leaf to displace 1.0m upwards?

Answers

Answer:

√2

Explanation:

From the question, we're given that the

Acceleration of the leaf is 1 m/s²

Change in displacement of the leaf is 1 m/s.

Again, from the question, we can tell that the initial velocity u = 0, since the object starts at rest

Now, to solve this, we don't the equation of motion to ur

S = ut + 1/2at², substituting the whole parameters, we then have

1 = 0 * t + 1/2 * 1 * t²

1 = 1/2 * t²

t²/2 = 1

t² = 2

t = √2 seconds

Therefore the time it takes the leaf to dislodge is 2 seconds

3.A bridge usually has expansion joints. They allow the bridge to become slightly longer when it
experiences thermal expansion. Look at the diagram below of the bridge joint. When the weather
becomes cool, the "teeth" of the joint move away from each other. When the weather becomes
warm, they move toward each other. Which statement is true about the particles that make up the
bridge?
A.When the sides of the joint are close together, the particles have more kinetic energy
than they do when the sides are farther apart.
B.When the sides of the joint are far apart, the particles have more kinetic energy than
they do when the sides are closer together.
C.The particles contain the same amount of kinetic energy no matter how much the
bridge has expanded.
D. The kinetic energy of the particles changes, but the amount it changes does not
depend on the temperature of the bridge.

Answers

Answer:

a) When the sides of the joint are close together, the particles have more kinetic energy than they do when sides are farther apart.

Explanation:

A 50.0-kg child stands at the rim of a merry-go-round of radius 2.25 m, rotating with an angular speed of 3.30 rad/s.. What is the child's centripetal acceleration?

Answers

Answer: the child's centripetal acceleration=24.50 m/s²

Explanation:

Given that mass of child= 50 kg

radius of merry go round= 2.25m

angular speed = 3.30 rad/s

 

Centripetal Acceleration  = v²/ r

  But  V= ωr

So Centripetal Acceleration  = v²/ r =  (ωr)²/ r

=(3.30)² x  (2.25)²/ 2.25 = (3.30)² x  2.25

=24.5025m/s²

=24.50 m/s²

A 15.5 kg box is pushed across the lunch table. The acceleration of the box is 24.2 m/S. What is the net force applied to the box? ​

Answers

Answer:

375.1 N

Explanation:

The force acting on an object given it's mass and acceleration can be found by using the formula

force = mass × acceleration

From the question we have

force = 15.5 × 24.2

We have the final answer as

375.1 N

Hope this helps you

A student is performing an experiment that involves the charge on a metal sphere that is attached to a charged electroscope. A charged rod is brought near the sphere without touching it. As a result the leaves of the electroscope separate more. The rod is then removed, and the leaves return to their initial separated position. The student repeats the procedure, but this time the electroscope is grounded and the ground is removed before the rod is removed from near the sphere. The leaves again end up separated. What can be concluded about the charge on the separated leaves of the electroscope

Answers

Answer:

The leaves have a charge in each experiment, but the sign of the charge cannot be determined.

Explanation:

In the first experiment, A charged rod is brought near the sphere without touching it. As a result the leaves of the electroscope separate more.

Thus indicates that there are charges involved. Now, like charges would repel like what is happening here but we don't know if they are both positive or negative because in both cases, they will still repel.

Now for the second experiment, electroscope is grounded and the ground is removed before the rod is removed from near the sphere. The leaves end up being separated again.

Similar to the first time, it's clear there are charges but the charges repel. Thus, they are the same sign charges but we don't know if they are both positive or negative.

Thus, in both cases we can conclude that the leaves have charges but we don't know their signs.

Two railway tracks are parallel to west east direction. Along one track, train A moves with a speed of 45 m/s from west to east, while along the second track, train B moves with a speed of 60 m/s from east to west . calculate speed of Bw.r.t. A​

Answers

Answer:

(i) Relative velocity of B w.r.t A= Sum of speeds of trains

=54+90

=144kmph

(ii)Relative velocity of B w.r.t Ground(G)=v

B/G

=−90kmph

v

G

=0

Relative velocity of ground(G) w.r.t B =v

G/B

=v

G

−v

B/G

v

G/B

=0−(−90)

v

G/B

=90kmph

Show that a 2,500,000-J change in kinetic energy occurs for an airplane that is moved 500 m in takeoff by a sustained force of 5000 N.

Answers

Answer:

The answer to your question is given below

Explanation:

To solve this problem, we'll assume that the plane is initially at rest.

Hence, the kinetic energy of the plane at rest is zero i.e Initial kinetic energy (KE₁) = 0

Next, we shall determine the final kinetic energy of the plan when the force was applied. This can be obtained as follow:

Force (F) = 5000 N

Distance (s) = 500 m

Energy (E) =?

E = F × s

E = 5000 × 500

E = 2500000 J

Since energy an kinetic energy has the same unit of measurement, thus, the final kinetic energy (KE₂) of the plane is 2500000 J

Finally, we shall determine the change in the kinetic energy of the plane. This can be obtained as follow:

Initial kinetic energy (KE₁) = 0

Final kinetic energy (KE₂) = 2500000 J

Change in kinetic energy (ΔKE) =?

ΔKE = KE₂ – KE₁

ΔKE = 2500000 – 0

ΔKE = 2500000 J

Hence, the change in the kinetic energy of the plane is 2500000 J.

If a 0.750M solution exerts an osmotic pressure of 22.5atm, what must be the temperature (in Kelvin) of the solution

Answers

Answer:

T = 365.58 K

Explanation:

Given that,

The concentration of solution, C = 0.750M

Osmotic pressure, P = 22.5 atm

We need to find the temperature of the solution.

The formula for the osmotic pressure is given by :

[tex]P=CRT[/tex]

Where

R is gas constant, [tex]R=0.08206\ L\ atm/mol-K[/tex]

[tex]T=\dfrac{P}{CR}\\\\=\dfrac{22.5}{0.75\times 0.08206}\\\\=365.58\ K[/tex]

So, the temperature of the solution is 365.58 K.

At what angle should the roadway on a curve with a 50m radius be banked to allow cars to negotiate the curve at 12 m/s even if the roadway is frictionless?

Answers

Answer:

The road bank angle is 16.38⁰.

Explanation:

radius of curvature of the road, r = 50 m

allowable speed of car on the road, v = 12 m/s

The bank angle is calculated as;

[tex]\theta = tan^{-1} (\frac{v^2}{gr} )[/tex]

where;

θ is the road bank angle

g is acceleration due to gravity = 9.8 m/s²

[tex]\theta = tan^{-1} (\frac{v^2}{gr} )\\\\\theta = tan^{-1} (\frac{12^2}{9.8 \times 50} )\\\\\theta = tan^{-1} ( 0.2939)\\\\\theta = 16.38 ^0[/tex]

Therefore, the road bank angle is 16.38⁰.

Are volcanoes fed by highly viscous magma a greater threat to life and property than volcanoes supplied with very fluid magma?

Answers

Answer:

A volcano fed by highly viscous magma is likely to be a greater threat to life and property than a volcano supplied with very fluid magma because with high viscous magma gas is trapped more in the magma so the gas will build up and then eventually explode, whereas with fluid magma the gas can escape allowing the magma.

HOPE THIS HELPS!!!

Explanation:

Less fluid magma done great damaged to the property and life as compared to highly viscus magma.

Highly viscus magma VS less viscous magma

No, volcanoes that are fed by highly viscous magma are not a greater threat to life and property than volcanoes supplied with very fluid magma because the highly viscous magma can't move to a large distance due to its large viscosity.

While on the other hand, those volcanoes that supplied with very fluid magma do great damaged to the property due to its easily flowing on the surface of earth so we can conclude that less fluid magma done great damaged to the property and life as compared to highly viscus magma.

Learn more about magma here: https://brainly.com/question/23661578

define alpha and beta​

Answers

alpha is the excess return on an investment after adjusting for market related volatility and random fluctuations.

beta is a measure of volatility relative to a benchmark ,such as the S&P 500.

Explanation:

alpha and beta are two different parts of an equation used to explain the performance of stocks and investments funds. But in maths alpha and beta is the Greek alphabet

A boy standing at one end of a floating raft that is stationary relative to the shore walks to the opposite end of the raft, away from shore. As a consequence, the raft (a) remains stationary, (b) moves away from the shore, or (c) moves toward the shore. (Hint: Use Conservation of Momentum)

Answers

Answer:

(c) moves toward the shore.

Explanation:

Momentum can be defined as the multiplication (product) of the mass possessed by an object and its velocity. Momentum is considered to be a vector quantity because it has both magnitude and direction.

Mathematically, momentum is given by the formula;

[tex] Momentum = mass * velocity [/tex]

The law of conservation of momentum states that the total linear momentum of any closed system would always remain constant with respect to time.

In this scenario, a boy standing at one end of a floating raft that is stationary relative to the shore walks to the opposite end of the raft, away from shore. As a consequence, the raft moves toward the shore because the momentum of the closed system (boy and raft) has a zero magnitude and would remain constant.

Vary the sled’s height and mass. Observe the effect of each change on the potential energy of the sled.

a. How does potential energy change when height is increased?
b. How does potential energy change when mass is increased?
c. Compare a sled’s potential energy at 10 m to its potential energy at 20 m. How does doubling height affect potential energy?
d. Compare the potential energy of a 100-kg sled and a 200-kg sled at the same height. How does doubling mass affect potential energy?

Answers

Answer:

a. Potential energy of the sled is increased when height of sled is increased.

b. Potential energy of the sled is increased when height of sled is increased.

c. P.E₂₀ = 2 P.E₁₀

d. P.E₂₀₀ = 2 P.E₁₀₀

Explanation:

The potential energy of the sled can be given by the following:

[tex]Potential\ Energy = P.E = mgh\\[/tex]

where,

m = mass of sled

g = acceleration due to gravity

h = height of sled

a.

It is clear from the formula that potential energy of sled is directly proportional  to the height of sled.

Therefore, potential energy of the sled is increased when height of sled is increased.

b.

It is clear from the formula that potential energy of sled is directly proportional to the mass of sled.

Therefore, potential energy of the sled is increased when mass of sled is increased.

c.

[tex]P.E\ at\ 10\ m:\\P.E_{10} = 10mg\\P.E\ at\ 20\ m:\\P.E_{20} = 20mg\\\frac{P.E_{20}}{P.E_{10}} = \frac{20mg}{10mg}[/tex]

P.E₂₀ = 2 P.E₁₀

d.

[tex]P.E\ at\ 100\ kg:\\P.E_{100} = 100gh\\P.E\ at\ 200\ m:\\P.E_{200} = 200gh\\\frac{P.E_{200}}{P.E_{100}} = \frac{200gh}{100gh}[/tex]

P.E₂₀₀ = 2 P.E₁₀₀

O D. Both objects won't move at all. They will just stay where they were released.
3. A 46-gram golf ball and a 400-gram soccer ball were released at the same time from the top of a tall tower. What is the best explanation of this picture?
I
O A Heavier objects always fall faster than lighter objects.
O B. Lighter objects always fall faster than heavier objects
O C. The soccer ball was affected by air resistance less than the golf ball
O D. The soccer ball was affected by air resistance more than the golf ball.

Answers

Answer:

Do not see a picture or graph but suspect it would show the golf ball falling faster and striking the ground slightly before the soccer ball.

Probably D:  Soccer ball was affected by air resistance more than the golf ball.

Explanation:

Even though heavier, friction loss of the greater surface area soccer ball will counter pull of gravity more than the compact golf ball.

In a vacuum, (no friction) both objects fall at the same rate regardless of mass.

The diameter of 0-gauge copper wire is 8.252 mm. Find the resistance of a 1.00-km length of such wire used for power transmission.

Answers

Answer:

The value is [tex]R = 0.321 \ \Omega[/tex]

Explanation:

From the question we are told that

   The diameter is  [tex]d = 8.252 \ mm = 0.008252 \ m[/tex]

    The length of the wire is  [tex]l = 1.0 \ km = 1000 \ m[/tex]

   Generally the cross sectional area of the copper wire is mathematically represented as

           [tex]A = \pi * \frac{d^2}{4}[/tex]

=>        [tex]A = 3.142 * \frac{ 0.008252^2}{4}[/tex]

=>         [tex]A = 5.349 *10^{ - 5} \ m^2[/tex]

Generally the resistance is mathematically represented as

      [tex]R = \frac{\rho * l }{A }[/tex]

Here [tex]\rho[/tex] is the resistivity of copper with the value  [tex]\rho = 1.72*10^{-8} \ \Omega \cdot m[/tex]

=>    [tex]R = \frac{1.72 *10^{-8} * 1000 }{5.349 *10^{ - 5} }[/tex]

=>    [tex]R = 0.321 \ \Omega[/tex]

What happens when a population exceeds its carrying capacity?

Answers

They either die from not enough food, they move to another place, or sometimes they adapt to the amount of organisms there. That is all I know

Answer:

If a population exceeds carrying capacity, the ecosystem may become unsuitable for the species to survive. If the population exceeds the carrying capacity for a long period of time, resources may be completely depleted.

How does temperature rise and impurities affect the surface tension of water
(2 mks)​

Answers

Answer:

Surface tension is the downward force acting on the surface of liquid due to presence of inter molecular forces or cohesive forces between the particles of liquid.

Surface tension decreases with increase in temperature as the forces among particles decrease due to increase in kinetic energy and thus the cohesive nature decreases and thus surface tension also decreases.

Surface tension may decrease or increase with increase in soluble impurities .Insoluble impurities decrease the surface tension.

Starting at t = 0 a net external force in the +x-direction is applied to an object that has mass 5.00 kg. A graph of the force as a function of time is a straight line that passes through the origin and has slope 5.00 N/s.
If the object is at rest at t = 0 what is the magnitude of the force when the object has reached a speed of 9.00 m/s?
Express your answer with the appropriate units.

Answers

Answer:

  15√2 N

Explanation:

The acceleration is given by ...

  a = F/m = 5t/5 = t . . . . meters/second^2

The velocity is the integral of acceleration:

  v = ∫a·dt = (1/2)t^2

This will be 9 m/s when ...

  9 = (1/2)t^2

  t = √18 . . . . seconds

And the force at that time is ...

  F = 5(√18) = 15√2 . . . . newtons

How does the spring constant of the smaller springs relate to that of the original spring? Choose the correct explanation.
A) The spring constant of each half will be half the spring constant of the original long spring since it will stretch twice as much under the same tension
B) The spring constant of each half will be twice the spring constant of the original long spring since it will stretch twice as much under the same tension.
C) The spring constant of each half will be twice the spring constant of the original long spring since it will stretch only half as much under the same tension.
D) The spring constant of each half will be half the spring constant of the original long spring since it will stretch only half as much under the same tension.

Answers

Answer:

C) The spring constant of each half will be twice the spring constant of the original long spring since it will stretch only half as much under the same tension.

Explanation:

Hooke's law states that the force needed to extend or compress a spring by a distance is proportional to that distance. If is given as:

F = ke, where F is the force applied, k is spring constant and e is the extension.

If a force f is applied to a spring with a spring constant k and by a distance stretched (x) then:

k = F / x

For half the spring, if the same force F is applied, the stretch would be half (x/2), hence the spring constant C is:

C = F / (x/2)

C = 2 (F / x) = 2 * spring constant of original spring

Using Rayleigh's criterion, calculate the diameter of an earth-based telescope that gives this resolution with 700 nm light.

Answers

Complete Question

Due to blurring caused by atmospheric distortion, the best resolution that can be obtained by a normal, earth-based, visible-light telescope is about 0.3 arcsecond (there are 60 arcminutes in a degree and 60 arcseconds in an arcminute).Using Rayleigh's criterion, calculate the diameter of an earth-based telescope that gives this resolution with 700 nm light

Answer:

The diameter is  [tex]D = 0.59 \ m[/tex]    

Explanation:

From the question we are told that

      The best resolution is  [tex]\theta = 0.3 \ arcsecond[/tex]

       The  wavelength is  [tex]\lambda = 700 \ nm = 700 *10^{-9 } \ m[/tex]

       

Generally the

         1 arcminute  = >  60 arcseconds

=>      x arcminute =>   0.3 arcsecond

So

       [tex]x = \frac{0.3}{60 }[/tex]

=>    [tex]x = 0.005 \ arcminutes[/tex]

Now

         60 arcminutes  =>  1 degree

          0.005 arcminutes = >  z degrees  

=>       [tex]z = \frac{0.005}{60 }[/tex]

=>      [tex]z = 8.333 *10^{-5} \ degree[/tex]

Converting to radian  

           [tex]\theta = z = 8.333 *10^{-5} * 0.01745 = 1.454 *10^{-6} \ radian[/tex]

Generally the resolution is mathematically represented as

            [tex]\theta = \frac{1.22 * \lambda }{ D}[/tex]

=>    [tex]D = \frac{1.22 * \lambda }{\theta }[/tex]

=>     [tex]D = \frac{1.22 * 700 *10^{-9} }{ 1.454 *10^{-6} }[/tex]    

=>     [tex]D = 0.59 \ m[/tex]    

Bradley drops a rock in a well. It falls for 12 seconds. How deep is the well?

Answers

It’s 12 seconds long

A 0.046 kg golf ball hit by a driver can accelerate from rest to 67 m/s in 1 ms while the driver is in contact with the ball. How much average force does the golf ball experience

Answers

Answer:

Average force = 67 mn

Explanation:

Given:

Initial velocity u = 0 m/s

Final velocity v = 67 m/s

Time t = 1 ms = 0.001 sec.

Computation:

Using Momentum theory

Change in momentum  = F × Δt

 (v-u)/t =  F × Δt

F × 0.001 = (67 - 0)/0.001

F= 67,000,000

Average force = 67 mn

If the coefficient of kinetic friction between tires and dry pavement is 0.80, what is the shortest distance in which you can stop an automobile by locking the brakes when traveling at 29.1 m/s?
A. 54 m
B. 50 m
C. 64 m
D. 60 m

Answers

Answer:

54m is the answer......

a boulder with a mass of about 1.5 x 10^5 kg falls and strikes the ground at 70 m/s how much kinetic energy dies the boulder deliver to the ground PLEASE HELP

Answers

Answer:

k. e= 1/2 mv^2

Ke = 1/2 * 1.5 * 10^5 * 70^2

3.675 *10^8 joules

Other Questions
I NEED HELP ASAP PLEASE Which describes an effect of US mobilization efforts during the war?The military grew slowly once the United States entered the war. Women were prohibited from serving in the military.Very few people volunteered to help in the war effort. More than 12 million people served during the war. A middle school band held a car wash to raise money. if they washed 28 cars in 2 hours. At this rate, how many cars did they wash in 9 hours A.26B.252C.14D.126 In the "Giver", Jonas's assignment, The Receiver of Memory, is the least important in the community.Answers- False No answer text provided True A rectangle has length 3x^2-5x+1 and width x^2-4. Which expression represents the perimeter of the rectangle? Image shows the options. Russian Geography on the North European Plain isA. TundraB. MoonsoonC. TyphoonsD. tropical rain forest how do you text people on here Which Finance career pathway includes helping people create and manage budgets and calculate taxes?A: Business Financial ManagementB: Banking ServicesC: Financial and Investment PlanningD: Insurance Services will give brainliest What is the value of - |-60|? HELP ME PLZ Two parallel lines are cut by a transversal as shown below.Suppose mZ1 = 121. Find m2 6 and m2 7.m26 = MeHL7 = A phagocytic cell has a mutation in a gene for a hydrolytic enzyme that renders the enzyme nonfunctional. What is the most likely effect of the mutation when this phagocytic cell ingests a pathogen? A. a vacuole will not form B. the pseudopodia will not be able to surround the pathogen as well C. pathogen debris will not exit the cell via exocytosis D. the lysosome will not degrade the pathogen effectively Which is the best example of a popular theme found in the art and literature of the Harlem Renaissance?perseverancesuccessrevolutionfairness do you know zombsroyal.io Choose the phrase that best completes this sentence._____le comdien soit suisse.Il est impossible queJe sais queJe crois queJe suis sr que Select the correct answer from each drop-down menu.Fill in the correct terms to describe the method of transmission of the given parasite.Trichomonas isthat is carried between hosts byin cattle. It can cause infertility. Amy usually swims 20 laps in 30 minutes. What is her rate in laps perminute? From the speakers experience, the reader can infer that This is a poem from A Walk in my Rainforest.A:nature is always the same no matter where you are.B:the rainforest is not a nice place to live.C:no one enjoys the rainforest.D:beauty can be found in nature. The temperatures of Charleston, South Carolina on May 3rd are recorded in the table below. Determine the equation that models this data. Sara and Helen have blue eyes like their mother.Describe how genetic information is passed on from a parent to a child.GIVING THE BRAINLIEST Steam Workshop Downloader