If the point (-6, 7) is on the graph of 3y=6=f(=(x+2)) on the graph of y = f(x)? what is the corresponding point

Answers

Answer 1

Answer:

The corresponding point on the graph of y = f(x) is (-8, 7).

Step-by-step explanation:

Given that the point (-6, 7) lies on the graph of 3y = f(x + 2), we can determine the corresponding point on the graph of y = f(x) by shifting the x-coordinate of the given point 2 units to the left.

Since the x-coordinate of the given point is -6, shifting it 2 units to the left gives us -6 - 2 = -8. Therefore, the corresponding x-coordinate on the graph of y = f(x) is -8.

The y-coordinate of the given point remains the same, which is 7. So, the corresponding point on the graph of y = f(x) is (-8, 7).

Hence, the corresponding point on the graph of y = f(x) is (-8, 7).

To learn more about Corresponding Point

brainly.com/question/28281144

#SPJ11


Related Questions

For the vector field F = ⟨− y, x, z ⟩
and the surface that is the part of the paraboloid z = 1 − x^2 − y^2 that is
above the plane z = 0 and having an edge at z = 0
Calculate ∬S∇ × F⋅dS∬S∇ × F⋅dS to three exact decimal places

Answers

The double integral will be ∬R (4xy + 2x - 2y) sqrt(4x^2 + 4y^2 + 1) dx dy.

To calculate the surface integral of ∇ × F ⋅ dS over the given surface, we need to follow these steps:

1. Determine the normal vector to the surface S:

The surface S is defined by the equation z = 1 − x^2 − y^2, which is a paraboloid. The normal vector to the surface can be found by taking the gradient of the function representing the surface:

∇f = ⟨-2x, -2y, 1⟩

2. Calculate the curl of F:

∇ × F =

det |i  j  k|

    |-y  x  z|

    |-2x  -2y  1|

  = ⟨-2y - 1, -1 - 0, -2x⟩

  = ⟨-2y - 1, -1, -2x⟩

3. Compute the dot product of ∇ × F and the normal vector ∇f:

∇ × F ⋅ ∇f = (-2y - 1)(-2x) + (-1)(-2y) + (-2x)(1)

          = 4xy + 2x - 2y

4. Calculate the magnitude of the normal vector ∇f:

|∇f| = [tex]sqrt((-2x)^2 + (-2y)^2 + 1^2)[/tex]

    = sqrt(4x^2 + 4y^2 + 1)

5. Determine the area element dS:

The area element dS is given by dS = |∇f| dA, where dA represents the infinitesimal area on the xy-plane.

Since the surface is defined by z = 1 − x^2 − y^2 and it lies above the plane z = 0, we can use dA = dx dy.

6. Set up the double integral:

∬S ∇ × F ⋅ dS = ∬R (∇ × F ⋅ ∇f) |∇f| dA

Here, R represents the region on the xy-plane that projects onto the surface S.

7. Determine the limits of integration:

The region R is the projection of the surface S onto the xy-plane, which is a disk with radius 1 centered at the origin.

Therefore, the limits of integration are:

-√(1 - x^2) ≤ y ≤ √(1 - x^2)

-1 ≤ x ≤ 1

8. Evaluate the double integral:

∬S ∇ × F ⋅ dS = ∬R (4xy + 2x - 2y) sqrt(4x^2 + 4y^2 + 1) dx dy

This integral requires numerical evaluation. To obtain an exact decimal approximation, it is necessary to use numerical methods or software such as a computer algebra system or numerical integration software.

To know more about paraboloid  refer here:

https://brainly.com/question/32517782?#

#SPJ11

Similar to 2.4.59 in Rogawski/Adams. Let f(x) be the function 7x-1 for x < -1, ax + b for -15x5, f(x) = 1x-1 for x > } Find the value of a, b that makes the function continuous. (Use symbolic notation and fractions where needed.) help (fractions) a= 1 b=

Answers

The f(x) is the function 7x-1 for x < -1, ax + b for -15x5, f(x) = 1x-1 for x > } The value of a =7 ,  b = -43.

To make the function continuous, we need to ensure that the function values at the endpoints of each piece-wise segment match up.

Starting with x < -1, we have:

lim x->(-1)^- f(x) = lim x->(-1)^- (7x-1) = -8

f(-1) = 7(-1) - 1 = -8

So the function is continuous at x = -1.

Moving on to -1 ≤ x ≤ 5, we have:

f(-1) = -8

f(5) = a(5) + b

We need to choose a and b such that these two values match up. Setting them equal, we get:

a(5) + b = -8

Next, we consider x > 5:

f(5) = a(5) + b

f(7) = 1(7) - 1 = 6

We need to choose a and b such that these two values also match up. Setting them equal, we get:

a(7) + b = 6

We now have a system of two equations with two unknowns:

a(5) + b = -8

a(7) + b = 6

Subtracting the first equation from the second, we get:

a(7) - a(5) = 14

a = 14/2 = 7

Substituting back into either equation, we get:

b = -8 - a(5) = -8 - 35 = -43

Therefore, the values of a and b that make the function continuous are:

a = 7 and b = -43.

So the function is:

f(x) = 7x - 1    for x < -1

      7x - 43   for -1 ≤ x ≤ 5

       x - 1  for x > 5

To know more about function refer here:

https://brainly.com/question/30721594#

#SPJ11

7. (12 points) Calculate the line integral /F. F.dr, where F(x, y, z) = (xy, x2 + y2 + x2, yz) and C is the boundary of the parallelogram with vertices (0,0,1),(0,1,0), (2,0,-1), and (2,1, -2).

Answers

the line integral ∫F·dr along the boundary of the parallelogram is equal to 3.

To calculate the line integral ∫F·dr, we need to parameterize the curve C that represents the boundary of the parallelogram. Let's parameterize C as follows:

r(t) = (2t, t, -t - 2)

where 0 ≤ t ≤ 1.

Next, we will calculate the differential vector dr/dt:

dr/dt = (2, 1, -1)

Now, we can evaluate F(r(t))·(dr/dt) and integrate over the interval [0, 1]:

∫F·dr = ∫F(r(t))·(dr/dt) dt

      = ∫((2t)(t), (2t)² + t² + (2t)², t(-t - 2))·(2, 1, -1) dt

      = ∫(2t², 6t², -t² - 2t)·(2, 1, -1) dt

      = ∫(4t² + 6t² - t² - 2t) dt

      = ∫(9t² - 2t) dt

      = 3t³ - t² + C

To find the definite integral over the interval [0, 1], we can evaluate the antiderivative at the upper and lower limits:

∫F·dr = [3t³ - t²]₁ - [3t³ - t²]₀

      = (3(1)³ - (1)²) - (3(0)³ - (0)²)

      = 3 - 0

      = 3

To know more about parallelogram visit;

brainly.com/question/28854514

#SPJ11

A soccer ball is kicked upward from a height of 5 ft with an initial velocity of 48 ft/s. How high will it go? Use - 32 ft/s for the acceleration caused by gravity, Ignore air resistance. Answer 2 Poi

Answers

The maximum height reached by the soccer ball is approximately -67.25 ft. Note that the negative sign indicates that the ball is below the initial height, as it is on its way back down.

To find the maximum height reached by the soccer ball, we can use the kinematic equation for vertical motion under constant acceleration due to gravity:

h = h₀ + v₀t - (1/2)gt²

Where:

h is the final height (maximum height)

h₀ is the initial height (5 ft)

v₀ is the initial velocity (48 ft/s)

g is the acceleration due to gravity (-32 ft/s²)

t is the time it takes to reach the maximum height (unknown)

At the maximum height, the velocity will be 0, so we can set v = 0 and solve for t:

0 = v₀ - gt

Rearranging the equation, we have:

gt = v₀

Solving for t:

t = v₀ / g

Now we can substitute this value of t into the equation for height to find the maximum height:

h = h₀ + v₀t - (1/2)gt²

h = 5 + 48(v₀ / g) - (1/2)g(v₀ / g)²

h = 5 + 48(v₀ / g) - (1/2)(v₀ / g)²

h = 5 + 48(48 / -32) - (1/2)(48 / -32)²

h = 5 - 72 - (1/2)(3/2)

h = 5 - 72 - 9/4

h = -67 - 9/4

h ≈ -67.25 ft

To learn more about height: https://brainly.com/question/12446886

#SPJ11

solve this system of linear equations -4x+3y=-17 -3x4y=-11

Answers

Answer:

  (x, y) = (5, 1)

Step-by-step explanation:

You want the solution to the system of equations ...

-4x +3y = -17-3x +4y = -11

Solution

A quick solution is provided by a graphing calculator. It shows the point of intersection of the two lines to be (x, y) = (5, 1).

Elimination

You can multiply one equation by 3 and the other by -4 to eliminate a variable.

  3(-4x +3y) -4(-3x +4y) = 3(-17) -4(-11)

  -12x +9y +12x -16y = -51 +44

  -7y = -7

  y = 1

And the other way around gives ...

  -4(-4x +3y) +3(-3x +4y) = -4(-17) +3(-11)

  16x -12y -9x +12y = 68 -33

  7x = 35

  x = 5

So, the solution is (x, y) = (5, 1), same as above.

<95141404393>

The value of x and y in the given system of linear equations: -4x+3y=-17 and -3x+4y=-11 is  x=5 and y=1.

Given:  -4x+3y=-17    -(i)

            -3x+4y=-11     -(ii)

To solve the above equations, multiply equation (i) by 3 and equation (ii) by 4.

On multiplying equation (i) by 3 and equation (ii) by 4, we get,

            -12x+9y=-51   -(iii)

            -12x+16y=-44  -(iv)

Solve the equations (iii) and (iv) simultaneously,

to solve the equations simultaneously subtract equations (iii) and (iv),

On subtracting equations (iii) and (iv), we get

             -7y=-7

               y=1

Putting the value of y in either of the equation (i) or (ii),

             -4x+3(1)=-17

             -4x=-17-3

             -4x=-20

                x=5

Therefore, the solution of the system of linear equations: -4x+3y=-17 and -3x+4y=-11 are  x=5 and y=1.

Read more about the system of linear equations:

https://brainly.com/question/29842184

The Correct Question is: Solve this system of linear equations -4x+3y=-17 -3x+4y=-11

             

triangles pqr and stu are similar. the perimeter of smaller triangle pqr is 249 ft. the lengths of two corresponding sides on the triangles are 46 ft and 128 ft. what is the perimeter of stu? round to one decimal place.

Answers

Therefore, the perimeter of triangle STU is approximately 693 ft.

If triangles PQR and STU are similar, it means that the corresponding sides are proportional. Let's denote the perimeter of triangle STU as P_stu.

Given:

Perimeter of triangle PQR = 249 ft.

Length of one corresponding side in PQR = 46 ft.

Length of the corresponding side in STU = 128 ft.

To find the perimeter of triangle STU, we need to determine the scale factor between the two triangles, and then multiply the corresponding sides of PQR by this scale factor.

Scale factor = Length of corresponding side in STU / Length of corresponding side in PQR

Scale factor = 128 ft / 46 ft

Now, we can calculate the perimeter of triangle STU using the scale factor:

P_stu = Perimeter of triangle PQR * Scale factor

P_stu = 249 ft * (128 ft / 46 ft)

P_stu = 693 ft (rounded to one decimal place)

To know more about perimeter,

https://brainly.com/question/10519069

#SPJ11

In 1948, 5 people bought 66 acres of land for $124.00 per acre, In 1967, the same 66 acres was sold and bought for $15,787.25 per acre.
What was the percentage rate of mark up from 1967 to 2013? what was the mark up of the acreage from 1967 until 2013

Answers

The percentage rate of mark up from 1948 to 1967 is 12,631.65%.

How to calculate the percentage rate of mark up?

Generally speaking, the markup price of a product can be calculated by multiplying the cost price by the markup value.

In order to determine the percentage rate of markup from 1967 to 192013, we would calculate the total overall cost and apply direct proportion as follows.

In 1948:

Total overall cost = 124 × 66

Total overall cost = $8,184.

In 1967:

Total overall cost = $15,787.25 × 66

Total overall cost = $1,041,958.5.

Mark up price = 1,041,958.5 - 8184.

Mark up price = 1,033,774.5

1,033,774.5/8,184 = x/100

x = 1,033,77450/8,184

x = 12,631.65%

Read more on markup here: brainly.com/question/30577908

#SPJ1

Complete Question:

In 1948, 5 people bought 66 acres of land for $124.00 per acre, In 1967, the same 66 acres was sold and bought for $15,787.25 per acre.

What was the percentage rate of mark up from 1948 to 1967?

find C on the directed line segment AB with A(-2, 6) and B(8,1) such that AC:CB = 2:3

Answers

To find the point C on the directed line segment AB such that the ratio of AC to CB is 2:3, we can use the concept of the section formula. By applying the section formula, we can calculate the coordinates of point C.

The section formula states that if we have two points A(x1, y1) and B(x2, y2), and we want to find a point C on the line segment AB such that the ratio of AC to CB is given by m:n, then the coordinates of point C can be calculated as follows:

Cx = (mx2 + nx1) / (m + n)

Cy = (my2 + ny1) / (m + n)

Using the given points A(-2, 6) and B(8, 1), and the ratio AC:CB = 2:3, we can substitute these values into the section formula to calculate the coordinates of point C. By substituting the values into the formula, we obtain the coordinates of point C.

Learn more about segment here : brainly.com/question/12622418

#SPJ11

Solve ë(t) + 4x(t) + 3x(t) = 9t, x(0) = 2, *(0) = 1 using the Laplace transform. = =

Answers

The solution to the given differential equation is x(t) = 9/8 * (1 - t - e⁽⁻⁸ᵗ⁾), with the initial conditions x(0) = 2 and x'(0) = 1.

to solve the given differential equation using laplace transform, we will take the laplace transform of both sides of the equation and solve for x(s), where x(s) is the laplace transform of x(t).

the given differential equation is:

x'(t) + 4x(t) + 3x(t) = 9t

taking the laplace transform of both sides, we get:

sx(s) + x(s) + 4x(s) + 3x(s) = 9/s²

combining like terms, we have:

(s + 8)x(s) = 9/s²

now, we can solve for x(s) by isolating it:

x(s) = 9 / (s² * (s + 8))

to find the inverse laplace transform of x(s), we need to decompose the expression into partial fractions. we can express x(s) as:

x(s) = a / s + b / s² + c / (s + 8)

multiplying both sides by the common denominator, we get:

9 = a(s² + 8s) + bs(s + 8) + cs²

expanding and equating the coefficients, we get the following system of equations:

a + b + c = 0    (coefficient of s²)8a + 8b = 0      (coefficient of s)

8a = 9           (constant term)

solving this system of equations, we find:a = 9/8

b = -9/8c = -9/8

now, we can rewrite x(s) in terms of partial fractions:

x(s) = 9/8 * (1/s - 1/s² - 1/(s + 8))

taking the inverse laplace transform of x(s), we get the solution x(t):

x(t) = 9/8 * (1 - t - e⁽⁻⁸ᵗ⁾)

Learn more about denominator here:

https://brainly.com/question/15007690

#SPJ11

Describe in words the region of ℝ3
represented by the inequalities.
x2 + z2≤ 9, 0
≤ y
≤ 1
Here,
x2 + z2≤
9
or, equivalently,
x2 + z2
≤ 3
which describes the set of all points

Answers

The region in ℝ³ represented by the inequalities[tex]x² + z² ≤ 9[/tex]and 0 ≤ y ≤ 1 can be described as a cylindrical region extending vertically along the y-axis, with a circular base centered at the origin and a radius of 3 units.

The inequality [tex]x² + z² ≤ 9[/tex]represents a circular region in the x-z plane, centered at the origin and with a radius of 3 units. This means that all points within or on the circumference of this circle satisfy the inequality. The inequality[tex]0 ≤ y ≤ 1[/tex] indicates that the y-coordinate must lie between 0 and 1, restricting the vertical extent of the region. Combining these constraints, we obtain a cylindrical region that extends vertically along the y-axis, with a circular base centered at the origin and a radius of 3 units.

Learn more about inequality here:

https://brainly.com/question/20383699

#SPJ11

Find the coordinates of the foci for the hyperbola. ) (y+2) (x-4)2 16 = 1 9 Find the equations of asymptotes for the hyperbola. y2 – 3x2 + 6y + 6x – 18 = 0

Answers

To find an angle that is coterminal with a standard position angle measuring -315 degrees and is between 0° and 360°, we can add or subtract multiples of 360° to the given angle until we obtain an angle within the desired range.

Starting with the angle -315°, we can add 360° repeatedly until we obtain a positive angle between 0° and 360°.

-315° + 360° = 45°

Now we have an angle of 45°, which is between 0° and 360° and is coterminal with the initial angle of -315°.

Therefore, an angle that is coterminal with a standard position angle measuring -315° and is between 0° and 360° is 45°.

Learn more about standard position angle here: brainly.com/question/19882727

#SPJ11

Question X Find the area A of the region that is bounded between the curve f(x)= 3-In (x) and the line g(x) interval [1,7]. Enter an exact answer. Provide your answer below: A= 2 units +1 over the

Answers

The area A of the region bounded between the curve f(x) = 3 - ln(x) and the line g(x) over the interval [1,7] is 2 units + 1/7.

To find the area of the region, we need to compute the definite integral of the difference between the two functions over the given interval. The curve f(x) = 3 - ln(x) represents the upper boundary, while the line g(x) represents the lower boundary.

Integrating the difference of the functions, we have:

A = ∫[1,7] (3 - ln(x)) - g(x) dx

Simplifying the integral, we get:

A = ∫[1,7] (3 - ln(x) - g(x)) dx

We need to find the equation of the line g(x) to proceed further. The line passes through the points (1, 0) and (7, 0) since it is a straight line. Therefore, g(x) = 0.

Now, we can rewrite the integral as:

A = ∫[1,7] (3 - ln(x)) - 0 dx

Integrating this, we get:

A = [3x - x ln(x)] | [1,7]

Substituting the limits of integration, we have:

A = (3 * 7 - 7 ln(7)) - (3 * 1 - 1 ln(1))

Simplifying further, we get:

A = 21 - 7 ln(7) - 3 + 0
A = 18 - 7 ln(7)

Hence, the exact answer for area A is 18 - 7 ln(7) square units.

To learn more about Definite integrals, visit:

https://brainly.com/question/27746495

#SPJ11

Solve the linear programming problem by the method of corners. (There may be more than one correct answer.) Maximize P = x + 4y subject to x + y 4 2x + y s x20, ΣΟ The maximum is P = 14 X at (x, ) = (0,4 1.)

Answers

Therefore, the maximum value of P is P = -32, and it occurs at the point (x, y) = (16, -12).

To solve the linear programming problem using the method of corners, we first need to identify the corner points of the feasible region, which is defined by the given constraints.

The constraints are:

x + y ≤ 4

2x + y ≤ x20

x ≥ 0, y ≥ 0

To find the corner points, we solve the system of equations formed by the equality signs of the constraints.

For the first constraint, x + y ≤ 4, equality holds when x + y = 4. Solving for y, we have y = 4 - x.

For the second constraint, 2x + y ≤ 20, equality holds when 2x + y = 20. Solving for y, we have y = 20 - 2x.

Now we can find the corner points by substituting the y-values obtained from the equalities into the inequalities and checking if the x-values satisfy the given constraints.

For y = 4 - x:

Substituting y = 4 - x into the second constraint:

2x + (4 - x) ≤ 20

Simplifying: x + 4 ≤ 20

x ≤ 16

So, one corner point is (x, y) = (16, 4 - 16) = (16, -12).

For y = 20 - 2x:

Substituting y = 20 - 2x into the first constraint:

x + (20 - 2x) ≤ 4

Simplifying: -x + 20 ≤ 4

x ≥ 16

So, another corner point is (x, y) = (16, 20 - 2(16)) = (16, -12).

Now, we have two corner points: (16, -12) and (16, -12). We can calculate the objective function P = x + 4y for these points to find the maximum value:

For (16, -12):

P = 16 + 4(-12) = -32

To know more about maximum value,

https://brainly.com/question/31266566

#SPJ11

Use Green's Theorem to evaluate • [F F = (√x + 3y, 2x + = 1x - x² from (0,0) to (1,0) and the line segment from (1,0) to and C consists of the arc of the curve y (0,0). F. dr, where

Answers

The line integral ∫C F · dr, where F = (√x + 3y, 2x + y - x²), and C consists of the line segment from (0,0) to (1,0) and the arc of the curve y = x² from (1,0) to (0,0), is equal to -1.

To evaluate the line integral ∫C F · dr using Green's Theorem, we first need to calculate the curl of the vector field F.

Green's Theorem states that the line integral of a vector field F around a simple closed curve C is equal to the double integral of the curl of F over the region D bounded by C.

Let's start by calculating the curl of F:

∇ × F = (∂/∂x, ∂/∂y, ∂/∂z) × (√x + 3y, 2x + y - x²)

To find the curl, we take the determinant of the partial derivatives with respect to x, y, and z:

∇ × F = (∂/∂x, ∂/∂y, ∂/∂z) × (√x + 3y, 2x + y - x²)

= (∂/∂y(2x + y - x²) - ∂/∂z(√x + 3y), ∂/∂z(√x + 3y) - ∂/∂x(√x + 3y), ∂/∂x(2x + y - x²) - ∂/∂y(2x + y - x²))

= (-3, 1, 2 - 1)

= (-3, 1, 1)

Now, we can apply Green's Theorem:

∫C F · dr = ∬D (∇ × F) · dA

Since the region D is the area enclosed by the curve C, we need to find the limits of integration. The curve C consists of two parts: the line segment from (0,0) to (1,0) and the arc of the curve y = x² from (1,0) to (0,0).

For the line segment from (0,0) to (1,0), we can parameterize the curve as r(t) = (t, 0) for t ∈ [0, 1].

For the arc of the curve y = x² from (1,0) to (0,0), we can parameterize the curve as r(t) = (t, t²) for t ∈ [1, 0].

Now, let's evaluate the line integral using Green's Theorem:

∫C F · dr = ∬D (∇ × F) · dA

= ∫[0,1]∫[0,0] (-3, 1, 1) · (dx, dy) + ∫[1,0]∫[t²,0] (-3, 1, 1) · (dx, dy)

Evaluating the first integral over the region [0,1]∫[0,0]:

∫[0,1]∫[0,0] (-3, 1, 1) · (dx, dy) = ∫[0,1]∫[0,0] -3dx + dy

= ∫[0,1] -3dx + 0

= -3x ∣[0,1]

= -3(1) - (-3)(0)

= -3

Evaluating the second integral over the region [1,0]∫[t²,0]:

∫[1,0]∫[t²,0] (-3, 1, 1) · (dx, dy) = ∫[1,0]∫[t²,0] -3dx + dy

= ∫[1,0] -3dx + dy

= -3x ∣[t²,0] + y ∣[t²,0]

= -3(0) - (-3t²) + 0 - t²

= 3t² - t²

= 2t²

Now we can sum up the two integrals:

∫C F · dr = ∫[0,1]∫[0,0] (-3, 1, 1) · (dx, dy) + ∫[1,0]∫[t²,0] (-3, 1, 1) · (dx, dy)

= -3 + 2t² ∣[0,1]

= -3 + 2(1)² - 2(0)²

= -3 + 2

= -1

Therefore, the line integral ∫C F · dr, where F = (√x + 3y, 2x + y - x²), and C consists of the line segment from (0,0) to (1,0) and the arc of the curve y = x² from (1,0) to (0,0), is equal to -1.

To learn more about Green's Theorem visit:

brainly.com/question/30080556

#SPJ11

the list below shows the number of miles sophia hiked on each of 7 days. 1.6 , 3.1 , 1.5 , 2.0 , 1.1 , 1.8, 1.5 what was the mean number of miles she hiked each day?

Answers

Therefore, the mean number of miles Sophia hiked each day is approximately 1.8 miles.

To find the mean number of miles Sophia hiked each day, we need to calculate the average by summing up all the values and dividing by the total number of days.

Sum of miles hiked = 1.6 + 3.1 + 1.5 + 2.0 + 1.1 + 1.8 + 1.5 = 12.6

Total number of days = 7

Mean number of miles = Sum of miles hiked / Total number of days = 12.6 / 7 ≈ 1.8

To know more about mean number,

https://brainly.com/question/31338403

#SPJ11

identify the kind of sample that is described. a news reporter at a family amusement park asked a random sample of kids and a random sample of adults about their experience at the park. the sample is a sample.

Answers

The kind of sample that is described is a random sample. A random sample is a type of probability sampling method where every member of the population has an equal chance of being selected for the sample.

In this case, the news reporter selected a random sample of kids and a random sample of adults at the family amusement park, which means that every kid and every adult had an equal chance of being selected to participate in the survey. Random sampling is important because it ensures that the sample is representative of the population, which allows for more accurate and generalizable conclusions to be drawn from the results.

By selecting a random sample, the news reporter can report on the experiences of a diverse group of individuals at the amusement park.

To know more about random sample visit:-

https://brainly.com/question/30759604

#SPJ11

Determine the global extreme values of the f(x,y)=7x−5y if y≥x−3,y≥-x−3, y≤8.
fmax = ?
fmin = ?

Answers

The endpoints of this boundary are (-3, -6) and (8, 5).

At (-3, -6): f(-3, -6) = 2(-3) + 15 = 9

To determine the global extreme values of the function f(x, y) = 7x - 5y,  analyze the given inequality constraints:

1. y ≥ x - 3

2. y ≥ -x - 3

3. y ≤ 8

consider the intersection of these constraints to find the feasible region and then evaluate the function within that region.

1. y ≥ x - 3 represents the area above the line with a slope of 1 and y-intercept at -3.

2. y ≥ -x - 3 represents the area above the line with a slope of -1 and y-intercept at -3.

3. y ≤ 8 represents the area below the horizontal line at y = 8.

By considering all these constraints together, we find that the feasible region is the triangular region bounded by the lines y = x - 3, y = -x - 3, and y = 8.

To find the global maximum and minimum values of f(x, y) within this region, we evaluate the function at the critical points within the feasible region and at the boundaries.

1. Evaluate f(x, y) at the critical points:

To find the critical points, we set the derivatives of f(x, y) equal to zero:

∂f/∂x = 7

∂f/∂y = -5

Since the derivatives are constants, there are no critical points within the feasible region.

2. Evaluate f(x, y) at the boundaries:

a) Along y = x - 3:

Substituting y = x - 3 into f(x, y), we have:

f(x, x - 3) = 7x - 5(x - 3) = 7x - 5x + 15 = 2x + 15

b) Along y = -x - 3:

Substituting y = -x - 3 into f(x, y), we have:

f(x, -x - 3) = 7x - 5(-x - 3) = 7x + 5x + 15 = 12x + 15

c) Along y = 8:

Substituting y = 8 into f(x, y), we have:

f(x, 8) = 7x - 5(8) = 7x - 40

To find the global maximum and minimum, we compare the values of f(x, y) at these boundaries and choose the largest and smallest values.

Now, we analyze the values of f(x, y) at the boundaries:

- Along y = x - 3: f(x, x - 3) = 2x + 15

- Along y = -x - 3: f(x, -x - 3) = 12x + 15

- Along y = 8: f(x, 8) = 7x - 40

The global maximum value (f_max) will be the largest value among these three expressions, and the global minimum value (f_min) will be the smallest value.

To find f_max and f_min, can either evaluate these expressions at critical points or endpoints of the boundaries. However, in this case, since there are no critical points within the feasible region, we only need to evaluate the expressions at the endpoints.

- Along y = x - 3:

The endpoints of this boundary are (-3, -6) and (8, 5).

At (-3, -6): f(-3, -6) = 2(-3) + 15 = 9

Learn more about endpoints here:

https://brainly.com/question/29164764

#SPJ11

- Given that f(x) = ax3 - 8x2 - 9x + b is exactly divisible by 3x - 2 and leaves a remainder of 6 when divided by x, find the values of a and b. Determine m and n so that 3x3 + mx2 – 5x +n is divisi

Answers

To find the values of a and b, we can use the Remainder Theorem and the factor theorem. The values of m and n are determined to be m = -7 and n = 0.

According to the Remainder Theorem, when a polynomial f(x) is divided by x - c, the remainder is equal to f(c). Similarly, the factor theorem states that if f(c) = 0, then x - c is a factor of f(x). Given that f(x) is exactly divisible by 3x - 2, we can set 3x - 2 equal to zero and solve for x:

3x - 2 = 0

3x = 2

x = 2/3

Since f(x) is divisible by 3x - 2, we know that f(2/3) = 0.

Substituting x = 2/3 into the equation f(x) = ax^3 - 8x^2 - 9x + b, we get:

f(2/3) = a(2/3)^3 - 8(2/3)^2 - 9(2/3) + b = 0

Simplifying further:

(8a - 32 - 18 + 3b)/27 = 0

8a - 50 + 3b = 0

8a + 3b = 50 ...........(1)

Next, we are given that f(x) leaves a remainder of 6 when divided by x. This means that f(0) = 6. Substituting x = 0 into the equation f(x) = ax^3 - 8x^2 - 9x + b, we get:

f(0) = 0 - 0 - 0 + b = 6

Simplifying further:

b = 6 ...........(2)

Therefore, the values of a and b are determined to be a = 1 and b = 6.

Now, let's move on to the second part of the question:

We need to determine values of m and n so that 3x^3 + mx^2 - 5x + n is divisible by 2x + 1.

Since 3x^3 + mx^2 - 5x + n is divisible by 2x + 1, we can set 2x + 1 equal to zero and solve for x:

2x + 1 = 0

2x = -1

x = -1/2

Substituting x = -1/2 into the equation 3x^3 + mx^2 - 5x + n, we get:

3(-1/2)^3 + m(-1/2)^2 - 5(-1/2) + n = 0

Simplifying further:

(-3/8) + (m/4) + (5/2) + n = 0

(4m - 12 + 40 + 16n)/8 = 0

4m + 16n + 28 = 0

4m + 16n = -28

Learn more about Remainder Theorem here: brainly.com/question/30062238

#SPJ11

Is Monopharm a natural monopoly? Explain.
b) What is the highest quantity Monopharm can sell without losing money? Explain.
c) What would be the quantity if Monopharm wants to earn the highest revenue? Explain.
d) Supposes Monopharm wants to maximize profit, what quantity does it sell, what price does it charge, and how much profit does it earn?
e) Continue with the above and suppose the MC curve is linear in the relevant range, how much is the dead-weight loss?
f) Suppose Monopharm can practice perfect price discrimination. What will be the quantity sold, and how much will be dead-weight loss?

Answers

Monopharm being a natural monopoly means that it can produce a given quantity of output at a lower cost compared to multiple firms in the market.

Whether Monopharm is a natural monopoly depends on the specific characteristics of the industry and market structure. If Monopharm possesses significant economies of scale, where the average cost of production decreases as the quantity produced increases, it is more likely to be a natural monopoly. To determine the highest quantity Monopharm can sell without losing money, they need to set the quantity where marginal cost (MC) equals marginal revenue (MR). At this point, Monopharm maximizes its profit by producing and selling the quantity where the additional revenue from selling one more unit is equal to the additional cost of producing that unit.

To maximize revenue, Monopharm would aim to sell the quantity where marginal revenue is zero. This is because at this point, each additional unit sold contributes nothing to the total revenue, but the previous units sold have already generated the maximum revenue.

To maximize profit, Monopharm needs to consider both marginal revenue and marginal cost. They would produce and sell the quantity where marginal revenue equals marginal cost. This ensures that the additional revenue generated from selling one more unit is equal to the additional cost incurred in producing that unit.

If the marginal cost curve is linear in the relevant range, the deadweight loss can be calculated by finding the difference between the monopolistically high price and the perfectly competitive market price, multiplied by the difference in quantity. In the case of perfect price discrimination, Monopharm would sell the quantity where the marginal cost equals the demand curve, maximizing its revenue. Since there is no consumer surplus in perfect price discrimination, the deadweight loss would be zero.

To learn more about monopoly click here: brainly.com/question/31918762

#SPJ11

Write the system x' = e³tx − 2ty +3 sin(t), y' = 8 tan(t) y + 3x − 5 cos (t) in the form d = P(t) [ * ] + ƒ (t). dty Use prime notation for derivatives and write a and à ʼ, etc., instead of æ(t), î '(t), or da. ]-[ = ][ +

Answers

The given system of equations x' = [tex]e^{(3t)}[/tex]x - 2ty + 3sin(t), y' = 8tan(t)y + 3x - 5cos(t) can be written as:

[tex]\frac{d}{d t}=\left[\begin{array}{cc}e^{3 t} & 2 t \\-2 t & -e^{3 t}\end{array}\right]\left[\begin{array}{l}x \\y\end{array}\right]+\left[\begin{array}{c}3 \sin (t) \\-5 \cos (t)\end{array}\right][/tex]

The system of equations is given by:

x' = [tex]e^{(3t)}[/tex]x - 2ty + 3sin(t)

y' = 8tan(t)y + 3x - 5cos(t)

To write the system in the desired form, we first rearrange the equations as follows:

x' - [tex]e^{(3t)}[/tex]x + 2ty = 3sin(t)

y' - 3x - 8tan(t)y = -5cos(t)

Now, we can identify the coefficients and functions in the system:

P(t) = [tex]e^{3t}[/tex]

q(t) = 2t

f₁(t) = 3sin(t)

f₂(t) = -5cos(t)

Using this information, we can rewrite the system in the desired form:

x' - P(t)x + q(t)y = f₁(t)

y' - q(t)x - P(t)y = f₂(t)

Thus, the system can be written as:

[tex]d=\left[\begin{array}{l}x^{\prime} \\y^{\prime}\end{array}\right]=\left[\begin{array}{cc}P(t) & q(t) \\-q(t) & -P(t)\end{array}\right]\left[\begin{array}{l}x \\y\end{array}\right]+\left[\begin{array}{l}f_1(t) \\f_2(t)\end{array}\right][/tex]

In the given notation, this becomes:

d = P(t) [ * ] + f(t)

where [ * ] represents the coefficient matrix and f(t) represents the vector of functions.

The complete question is:

"Write the system

x' = [tex]e^{(3t)}[/tex]x - 2ty + 3sin(t)

y' = 8tan(t)y + 3x - 5cos(t)

in the form d/dt=P(t) [ * ] + ƒ (t).

Use prime notation for derivatives."

Learn more about equations:

https://brainly.com/question/22688504

#SPJ11

Use the fourier transform analysis equation (5.9) to calculate the fourier transforms of:
(a) (½)^n-1 u[n-1]
(b) (½)^|n-1|

Answers

We will use Equation (5.9) of Fourier transform analysis to calculate the Fourier transforms of the given sequences: (a) (½)^(n-1)u[n-1] and (b) (½)^|n-1|. F(ω) = Σ (½)^(n-1)e^(-jωn) for n = 1 to ∞.  F(ω) = Σ (½)^(n-1)e^(-jωn) for n = -∞ to ∞

(a) To calculate the Fourier transform of (½)^(n-1)u[n-1], we substitute the given sequence into Equation (5.9). Considering the definition of the unit step function u[n-1] (which is 1 for n ≥ 1 and 0 for n < 1), we can rewrite the sequence as (½)^(n-1) for n ≥ 1 and 0 for n < 1. Thus, we obtain the Fourier transform as:

F(ω) = Σ (½)^(n-1)e^(-jωn)

Evaluating the summation, we get:

F(ω) = Σ (½)^(n-1)e^(-jωn) for n = 1 to ∞

(b) To calculate the Fourier transform of (½)^|n-1|, we again substitute the given sequence into Equation (5.9). The absolute value function |n-1| can be expressed as (n-1) for n ≥ 1 and -(n-1) for n < 1. Thus, we have the Fourier transform as:

F(ω) = Σ (½)^(n-1)e^(-jωn) for n = -∞ to ∞

In both cases, the specific values of the Fourier transforms depend on the range of n considered and the values of ω. Further evaluation of the summations and manipulation of the resulting expressions may be required to obtain the final forms of the Fourier transforms for these sequences.

Learn more about Fourier transform here:

https://brainly.com/question/1542972

#SPJ11

The gradient of f(x,y)=x²y-y3 at the point (2,1) is 4i+j O 4i-5j O 4i-11j O 2i+j O

Answers

The gradient of f(x, y) at the point (2, 1) is given by the vector (4i + 1j).

To find the gradient of the function f(x, y) = x²y - y³, we need to compute the partial derivatives with respect to x and y and evaluate them at the given point (2, 1).

Partial derivative with respect to x:

∂f/∂x = 2xy

Partial derivative with respect to y:

∂f/∂y = x² - 3y²

Now, let's evaluate these partial derivatives at the point (2, 1):

∂f/∂x = 2(2)(1) = 4

∂f/∂y = (2)² - 3(1)² = 4 - 3 = 1

Therefore, the gradient of f(x, y) at the point (2, 1) = (4i + 1j).

To know more about gradient refer here:

https://brainly.com/question/30908031#

#SPJ11

will only upvote if correct and fast 5. The plane curve represented by x(t)=t-sin t and y(t) = 1- cost or 0 < t < 2π a) Find the slope of the tangent line to the curve for b) Find an equation of the

Answers

The slope of the tangent line to the curve represented by x(t) = t - sin(t) and y(t) = 1 - cos(t) for 0 < t < 2π is given by dy/dx = (dy/dt) / (dx/dt).

The equation of the tangent line can be determined using the point-slope form, where the slope is the derivative of y(t) with respect to t evaluated at the given t-value.

To find the slope of the tangent line to the curve, we need to calculate the derivatives of x(t) and y(t) with respect to t. The derivative of x(t) can be found using the chain rule:

dx/dt = d(t - sin(t))/dt = 1 - cos(t).

Similarly, the derivative of y(t) is:

dy/dt = d(1 - cos(t))/dt = sin(t).

Now, we can calculate the slope of the tangent line using the formula dy/dx:

dy/dx = (dy/dt) / (dx/dt) = (sin(t)) / (1 - cos(t)).

For part (b), to find an equation of the tangent line, we need a specific t-value within the given interval (0 < t < 2π). Let's assume we want to find the equation of the tangent line at t = t₀. The slope of the tangent line at that point is dy/dx evaluated at t₀:

m = dy/dx = (sin(t₀)) / (1 - cos(t₀)).

Using the point-slope form of the equation of a line, we can write the equation of the tangent line as:

y - y₀ = m(x - x₀),

where (x₀, y₀) represents the point on the curve corresponding to t = t₀. Substituting the values of m, x₀, and y₀ into the equation will give you the specific equation of the tangent line at that point.

Learn more about slope of a tangent :

https://brainly.com/question/32393818

#SPJ11




Set up a double integral to compute the volume of the solid lying under the plane 6x + 2y + z = 80 and above the rectangular region R = [ - 1,5] x [ -3,0). -2.5 -2 -1.5 у -1.0.5 321012 85 80 75 70 65

Answers

To compute the volume of the solid lying under the plane 6x + 2y + z = 80 and above the rectangular region R = [-1, 5] x [-3, 0), we can set up a double integral over the given region.

The volume can be obtained by integrating the height of the solid (z-coordinate) over the region R. Since the plane equation is given as 6x + 2y + z = 80, we can rewrite it as z = 80 - 6x - 2y.

The double integral to compute the volume is:

V = ∬[R] (80 - 6x - 2y) dA,

where dA represents the differential area element over the region R.

To set up the integral, we need to determine the limits of integration for x and y. Given that R = [-1, 5] x [-3, 0), we have -1 ≤ x ≤ 5 and -3 ≤ y ≤ 0.

The double integral can be written as:

V = ∫[-3,0] ∫[-1,5] (80 - 6x - 2y) dxdy.

=∫[-3,0] ∫[-1,5] (80 - 6x - 2y) dxdy

= ∫[-3,0] [80x - 3x² - 2xy] | [-1,5] dy

= ∫[-3,0] (80(-1) - 3(-1)²- 2(-1)y - (80(5) - 3(5)² - 2(5)y)) dy

= ∫[-3,0] (-80 + 3 - 2y + 400 - 75 - 10y) dy

= ∫[-3,0] (323 - 12y) dy

= (323y - 6y²/2) | [-3,0]

= (323(0) - 6(0)²/2) - (323(-3) - 6(-3)²/2)

= 0 - (969 + 27/2)

= -969 - 27/2.

Therefore, the volume of the solid lying under the plane 6x + 2y + z = 80 and above the rectangular region R = [-1, 5] x [-3, 0) is -969 - 27/2.

learn more about double integral here:

https://brainly.com/question/27360126

#SPJ11

The number of strikeouts per game in Major League Baseball can be approximated by the function f(x) = 0.065x + 5.09, where x is the number of years after 1977 and corresponds to one year of play. Step 1 of 2: What is the value off(5) and what does it represent? Answer = Tables Keypad Keyboard Shortcuts = f(5) = What does f(5) represent? The total change between 1977 and 1982 for expected strikeouts per game is f(5). The rate of change in expected strikeouts per game was f(5) in 1982. The average change between 1977 and 1982 for the expected number of strikeouts per game is f(5). The expected strikeouts per game was f(5) in 1982.

Answers

The value of f(5) is 10.5125. We can say that the expected strikeouts per game was f(5) in 1982. Hence, the correct answer is "The expected strikeouts per game was f(5) in 1982."

The given function that approximates the number of strikeouts per game in Major League Baseball is given by f(x) = 0.065x + 5.09 where x represents the number of years after 1977 and corresponds to one year of play.

Step 1:

We need to find the value of f(5) which represents the expected strikeouts per game in the year 1982.

We can use the given formula to calculate the value of f(5).f(x) = 0.065x + 5.09f(5) = 0.065(5) + 5.09 = 5.4225 + 5.09 = 10.5125

Therefore, the value of f(5) is 10.5125.

Step 2:

We also need to determine what does f(5) represent.

The value of f(5) represents the expected number of strikeouts per game in the year 1982. This is because x represents the number of years after 1977 and corresponds to one year of play.

So, when x = 5, it represents the year 1982 and f(5) gives the expected number of strikeouts per game in that year.

Therefore, we can say that the expected strikeouts per game was f(5) in 1982. Hence, the correct answer is "The expected strikeouts per game was f(5) in 1982."

For more such questions on finding values , click on:

https://brainly.com/question/843074

#SPJ8

Solid A and Solid B are similar. The surface area of Solid A is 675 m2 and the surface area of Solid B is 432 m2. If the volume of Solid B is 960 m3, find the
volume of Solid A.18 mm 15 mm SA = 52 in2SA = 637 in2®

Answers

Volume of Solid A is 1,080 m3. The surface area ratio of Solid A to Solid B is 5:3.

To find the volume of Solid A, we need to use the surface area ratio between Solid A and Solid B. The ratio of the surface areas is given as 675 m2 for Solid A and 432 m2 for Solid B. We can set up a proportion to find the volume ratio.

The surface area ratio of Solid A to Solid B is 675 m2 / 432 m2, which simplifies to 5/3. Since the volume of Solid B is given as 960 m3, we can multiply the volume of Solid B by the volume ratio to find the volume of Solid A.

Volume of Solid A = (Volume of Solid B) x (Volume ratio)

= 960 m3 x (5/3)

= 1,600 m3 x 5/3

= 1,080 m3.

LEARN MORE ABOUT surface area here: brainly.com/question/29298005

#SPJ11

Write each expression as a product of trigonometric functions. See Example 8.
cos 4x - cos 2x
sin 102° - sin 95°
cos 5x + cos 8x
cos 4x + cos 8x
sin 25° + sin(-48°)
sin 9x - sin 3x

Answers

We are given several expressions involving trigonometric functions and need to rewrite them as products of trigonometric functions.

cos 4x - cos 2x: Using the cosine difference formula, we can write this expression as 2sin((4x + 2x)/2)sin((4x - 2x)/2) = 2sin(3x)sin(x).

sin 102° - sin 95°: Again, using the sine difference formula, we can rewrite this expression as 2cos((102° + 95°)/2)sin((102° - 95°)/2) = 2cos(98.5°)sin(3.5°).

cos 5x + cos 8x: This expression cannot be simplified further as a product of trigonometric functions.

cos 4x + cos 8x: Similarly, this expression cannot be simplified further.

sin 25° + sin(-48°): We know that sin(-x) = -sin(x), so we can rewrite this expression as sin(25°) - sin(48°).

sin 9x - sin 3x: Using the sine difference formula, we can express this as 2cos((9x + 3x)/2)sin((9x - 3x)/2) = 2cos(6x)sin(3x).

In summary, some of the given expressions can be simplified as products of trigonometric functions using the appropriate trigonometric identities, while others cannot be further simplified.

To learn more about trigonometric: -brainly.com/question/29156330#SPJ11

The cylindrical coordinates of the point with rectangular coordinates (3,-3,-7), under 0≤0 ≤2л are (r,0,2)=(3√2, ((7)/4), -7) O (r.0,2)=(3√√/2, ((7) /4).7) O (r.0,2)=(2√/2, ((7)/4), -7) O

Answers

The cylindrical coordinates of the point (3, -3, -7) under 0 ≤ θ ≤ 2π are (r, θ, z) = (3√2, (7π)/4, -7)

In cylindrical coordinates, a point is represented by the coordinates (r, θ, z), where r is the radial distance from the origin to the point, θ is the azimuthal angle measured counterclockwise from the positive x-axis in the xy-plane, and z is the height along the z-axis.

For the given rectangular coordinates (3, -3, -7), we can convert them to cylindrical coordinates as follows:

1. Radial Distance (r): The radial distance r is the distance from the origin to the point in the xy-plane.

It can be calculated using the formula r = √(x² + y²), where x and y are the rectangular coordinates in the xy-plane.

In this case, x = 3 and y = -3, so we have:

r = √(3² + (-3)²) = √(9 + 9) = √18 = 3√2.

2. Azimuthal Angle (θ): The azimuthal angle θ is determined by the location of the point in the xy-plane.

Since the given point lies in the negative x-axis quadrant, the angle θ will be π + arctan(y/x).

In this case, x = 3 and y = -3, so we have:

θ = π + arctan((-3)/3) = π - arctan(1) = π - π/4 = (7π)/4.

3. Height (z): The height z remains the same in both coordinate systems. In this case, z = -7.

Therefore, the cylindrical coordinates of (3, -3, -7) are (r, θ, z) = (3√2,(7π)/4, -7).

To know more about cylindrical coordinates refer here:

https://brainly.com/question/30394340#

#SPJ11

use
the product, quotient, or chain rules
Use "shortcut" formulas to find Dx[log₁0(arccos (2*sinh (x)))]. Notes: Do NOT simplify your answer. Sinh(x) is the hyperbolic sine function from

Answers

the derivative Dx[log₁₀(arccos(2sinh(x)))] is given by the expression:[tex](1/(arccos(2sinh(x))log(10))) * (-2cosh(x))/\sqrt(1 - 4*sinh^2(x))[/tex].

What is derivative?

The derivative of a function represents the rate at which the function changes with respect to its independent variable.

To find Dx[log₁₀(arccos(2*sinh(x)))], we can use the chain rule and the logarithmic differentiation technique. Let's break it down step by step.

Start with the given function: f(x) = log₁₀(arccos(2*sinh(x))).

Apply the chain rule to differentiate the composition of functions. The chain rule states that if we have g(h(x)), then the derivative is given by g'(h(x)) * h'(x).

Identify the innermost function: h(x) = arccos(2*sinh(x)).

Differentiate the innermost function h(x) with respect to x:

h'(x) = d/dx[arccos(2*sinh(x))].

Apply the chain rule to differentiate arccos(2sinh(x)). The derivative of [tex]arccos(x) is -1/\sqrt(1 - x^2)[/tex]. The derivative of sinh(x) is cosh(x).

[tex]h'(x) = (-1/\sqrt(1 - (2sinh(x))^2)) * (d/dx[2sinh(x)]).\\\\= (-1/\sqrt(1 - 4sinh^2(x))) * (2*cosh(x)).[/tex]

Simplify h'(x):

[tex]h'(x) = (-2cosh(x))/\sqrt(1 - 4sinh^2(x)).[/tex]

Now, differentiate the outer function g(x) = log₁₀(h(x)) using the logarithmic differentiation technique. The derivative of log₁₀(x) is 1/(x*log(10)).

g'(x) = (1/(h(x)*log(10))) * h'(x).

Substitute the expression for h'(x) into g'(x):

[tex]g'(x) = (1/(h(x)log(10))) * (-2cosh(x))/\sqrt(1 - 4*sinh^2(x)).[/tex]

Finally, substitute h(x) back into g'(x) to get the derivative of the original function f(x):

[tex]f'(x) = g'(x) = (1/(arccos(2sinh(x))log(10))) * (-2cosh(x))/\sqrt(1 - 4sinh^2(x)).[/tex]

Therefore, the derivative Dx[log₁₀(arccos(2sinh(x)))] is given by the expression:

[tex](1/(arccos(2sinh(x))log(10))) * (-2cosh(x))/\sqrt(1 - 4*sinh^2(x)).[/tex]

To learn more about derivative visit:

https://brainly.com/question/23819325

#SPJ4

The following polar equation describes a circle in rectangular coordinates: r=18cosθ Locate its center on the circle's radius and explanin your answer
(x0,y0)=
R=

Answers

Therefore, the center of the circle is located at (x0, y0) = (18cosθ, 18sinθ) and the radius of the circle is R = 18.

The given polar equation is r = 18cosθ, which describes a circle in rectangular coordinates.

To locate the center of the circle, we can observe that the equation is of the form r = a*cosθ, where "a" represents the radius of the circle.

Comparing this with the given equation, we can see that the radius of the circle is 18.

The center of the circle is located on the radius, which means it lies on the line passing through the origin (0,0) and is perpendicular to the line with the angle θ.

Since the radius is fixed at 18, the center of the circle is located at a point on this radius. Thus, the coordinates of the center can be expressed as (x0, y0) = (18cosθ, 18sinθ).

To know more about circle,

https://brainly.com/question/16996215

#SPJ11

Other Questions
the process by which the republican-controlled congress sought to make the reconstruction of ex-confederate states longer, harsher, and under greater congressional control is called Besides immunity, what other function does the lymphatic system serve? a. Fluid balance b. Electrolyte balance c. Regulation of body temperature d. Prevents cancer cells from spreading a) Find F'(x) b) Find the set A of critical numbers is of F. c) Make a sign chart for F'(x) d) Determine the intervals over which F is decreasing. e) Determine the set of critical numbers for which F has a local minimum. Consider the function F:[-3,3] R, F(x) = L (t 2)(t+1) dt according to the definition given in your textbook, which of the following does not represent a loss of research integrity? a. withholding information. b. falsifying data. c. altering research results. d. thinking strategically. let {wn} be the sequence of waiting times in a poisson process of internsity lamda =1 . show that xn = 2^n exp{-wn} defines a nonegative martingale true or false?1) the differential equation dy/dx=1+sinx-y isautonomous?2) Every autonomous differential equation is itself a separabledifferential equation.? How can you apply flywheel thinking to your companys budget?By investing as much money into things that drive customer happiness, such as support teams and product improvements, as you do into acquiring new customers through marketing and sales.By making sure funds are evenly distributed to each section of the flywheel. Marketing, sales, and customer support should each have equal proportions of the overall budget.If your flywheel is truly successful, you wont need to allocate resources to marketing at all because customer word of mouth will provide all of your new prospects.If your flywheel ever slows down, you can speed it back up by funding more customer discounts. restful hotel corporation, a u.s. firm, establishes a wholly owned subsidiary in singapore. as a parent corporation, with respect to the subsidiary, restful retains complete ownership of What is the the measure of AB40?C Given that your sin wave has a period of 3, what is the valueof b? HELPLP NEED FOR AN ASSIGNENT ! In the string pull illustration above, a shark on the button string results in the bottom string breaking, does this occur because of the balls weight of its mass? your roommate has applied to a number of medical schools. after receiving several rejection letters, she concludes that she is never going to amount to anything in life. your roommate is engaging in . What is the rectangular coordinates of (r, 6) = (-2,117) = (1, 2, 3,..., 175, 176, 177, 178}How many numbers in the set abovehave 5 as a factor but do not have10 as a factor?A. 1B. 3C. 4D. 17E. 18 Use Stokes' Theorem to evaluate F. dr where F(2, y, z) = zi + y +422 + y)k and C is the boundary of the part of the paraboloid where z = 4 22 y? which lies above the xy- plane and C is oriented counterclockwise when viewed from above. why has the semantic gap become a serious problem in perceptual systems? 6,7I beg you please write letters and symbols as clearly as possibleor make a key on the side so ik how to properly write out theproblemD 6) Find the derivative by using the Chain Rule. DO NOT SIMPLIFY! f(x) = (+9x4-3x) 7) Find the derivative by using the Product Rule. DO NOT SIMPLIFY! f(x) = -6x*(2x-1)5 A company produces a special new type of TV. The company has fixed costs of $470,000, and it costs $1300 to produce each TV. The company projects that if it charges a price of $2300 for the TV, it will be able to sell 850 TVs. If the company wants to sell 900 TVs, however, it must lower the price to $2000. Assume a linear demand. If the company sets the price of the TV to be $3500, how many can it expect to sell? It can expect to sell TVs (Round answer to nearest integer.) [-12.5 Points] DETAILS SPRECALC7 8.3.051. 22 Find the product zzzz and the quotient 21. Express your answers in polar form. v3(cos( 59 ) + i sin(SA)). 1 + i sin( 57 )). 22 = 5V5(cos( 37) + i sin( % )) 37 Z1 = COS Z122 = 21 NN Il Need Help? The Laplace Transform of 2t f(t) = 6e3+ + 4e is = Select one: 10s F(S) $2+ s-6 2s - 24 F(s) = S2 + S s-6 = O None of these. 10s F(S) S2-S- - 6 2s + 24 F(s) = 2 s S-6 =