need ans within 5 mins, will upvote
How much interest will Vince earn in his investment of 17,500 php at 9.69% simple interest for 3 years? A 5,087.25 php B 508.73 php 50.87 php D 50,872.50 php

Answers

Answer 1

Step-by-step explanation:

SI=PRT/100

17500×9.69×3/100

508725/100

=5087.25 (A)

Answer 2

Vince will earn 5,087.25 PHP in interest on his investment of 17,500 PHP at a simple interest rate of 9.69% for 3 years.

To calculate the simple interest, we use the formula: Interest = Principal * Rate * Time.

Principal (P) = 17,500 PHP

Rate (R) = 9.69% = 0.0969 (expressed as a decimal)

Time (T) = 3 years

Plugging in these values into the formula, we can calculate the interest earned:

Interest = 17,500 * 0.0969 * 3 = 5,087.25 PHP

Therefore, Vince will earn 5,087.25 PHP in interest on his investment over the course of 3 years.

Please note that this calculation assumes simple interest, which means the interest is calculated only on the initial principal amount and does not take compounding into account.

Learn more about simple interest here:

https://brainly.com/question/30964674

#SPJ11


Related Questions

Evaluate Sl.v1+d? + 1 + xº + 2 ds, where S is the helicoid with parameterization ! r(u, v) = (u cos v, v, u sin v) 0

Answers

To evaluate the expression[tex]∫S(∇•v)dS + 1 + x² + 2[/tex]ds, where S is the helicoid with parameterization [tex]r(u, v) = (u cos v, v, u sin v):[/tex]

First, we calculate ∇•v, where v is the vector field.

Let[tex]v = (v₁, v₂, v₃)[/tex], and using the parameterization of the helicoid, we have [tex]v = (u cos v, v, u sin v).[/tex]

[tex]∇•v = (∂/∂u)(u cos v) + (∂/∂v)(v) + (∂/∂w)(u sin v) = cos v + 1 + 0 = cos v + 1.[/tex]

Next, we need to find the magnitude of the partial derivatives of r(u, v).

[tex]∥∂r/∂u∥ = √((∂/∂u)(u cos v)² + (∂/∂u)(v)² + (∂/∂u)(u sin v)²) = √(cos²v + sin²v + 0²) = 1.[/tex]

[tex]∥∂r/∂v∥ = √((∂/∂v)(u cos v)² + (∂/∂v)(v)² + (∂/∂v)(u sin v)²) = √((-u sin v)² + 1² + (u cos v)²) = √(u²(sin²v + cos²v) + 1) = √(u² + 1).[/tex]

Finally, we integrate the expression over the helicoid.

[tex]∫S(∇•v)dS = ∫∫(cos v + 1)(∥∂r/∂u∥∥∂r/∂v∥)dudv[/tex]

[tex]∫S(∇•v)dS = ∫∫(cos v + 1)(1)(√(u² + 1))dudv.[/tex]

Further evaluation of the integral requires specific limits for u and v, which are not provided in the given question.

Learn more about parameterization here:

https://brainly.com/question/31403637

#SPJ11

2. (16 points) Verify that the function f(tr) = 2.1+ 16x + 1 satisfies the three hypotheses of Rolle's Theorem on the interval (-8,0). Then find all munbers c that satisfy the conclusion of Rolle's Th

Answers

There are no values of c in the open interval (-8, 0) that satisfy the conclusion of Rolle's Theorem.

The function [tex]f(x) = 2.1 + 16x + 1[/tex] satisfies the three hypotheses of Rolle's Theorem on the interval (-8, 0).

The hypotheses are as follows:

1. Continuity: The function f(x) is continuous on the closed interval [-8, 0]. In this case, f(x) is a polynomial function, and all polynomial functions are continuous for all real numbers.

2. Differentiability: The function f(x) is differentiable on the open interval (-8, 0). Again, since f(x) is a polynomial function, it is differentiable for all real numbers.

3. Equal function values: The function f(x) has equal values at the endpoints of the interval, [tex]f(-8) = f(0)[/tex].

Evaluating the function at these points, we have [tex]f(-8) = 2.1 + 16(-8) + 1 = -125.9[/tex] and [tex]f(0) = 2.1 + 16(0) + 1 = 3.1[/tex]. Thus, [tex]f(-8) = f(0) = -125.9 = 3.1[/tex].

Since the function satisfies all the hypotheses of Rolle's Theorem, there exists at least one number c in the open interval (-8, 0) such that f'(c) = 0.

To find such values of c, we need to calculate the derivative of f(x) and solve the equation f'(c) = 0.

Taking the derivative of f(x) = 2.1 + 16x + 1, we have f'(x) = 16. Setting this equal to zero and solving for x, we get:

16 = 0

This equation has no solution. Therefore, there are no values of c in the open interval (-8, 0) that satisfy the conclusion of Rolle's Theorem.

Learn more about Rolle's Theorem here:

https://brainly.com/question/32056106

#SPJ11

find the average value of the function f(x)=3x2−4x on the interval [0,3]
a. 15
b. 9
c. 3
d. 5

Answers

The average value of the function f(x) = [tex]3x^2[/tex] - 4x on the interval [0, 3] is c. 3. To find the average value of the function f(x) = [tex]3x^2[/tex] - 4x on the interval [0, 3], we need to compute the definite integral of the function over the given interval and divide it by the length of the interval.

The average value of a function f(x) on the interval [a, b] is given by the formula:

Average value = (1 / (b - a)) * ∫[a to b] f(x) dx

In this case, we have the function f(x) = [tex]3x^2[/tex] - 4x and the interval [0, 3]. To find the average value, we need to evaluate the definite integral of f(x) over the interval [0, 3] and divide it by the length of the interval, which is 3 - 0 = 3.

Computing the definite integral, we have:

∫[0 to 3] ([tex]3x^2[/tex] - 4x) dx = [tex][x^3 - 2x^2][/tex] evaluated from 0 to 3

= [tex](3^3 - 2(3^2)) - (0^3 - 2(0^2))[/tex]

= (27 - 18) - (0 - 0)

= 9

Finally, we divide the result by the length of the interval:

Average value = 9 / 3 = 3

To leran more about function refer:-

https://brainly.com/question/31062578

#SPJ11

Solve for x in the interval 0 < x < 21 2 sin x+1=csc X

Answers

To solve for x in the given equation, we can first simplify the equation by using the reciprocal identity for the cosecant function. Rearranging the equation, we have 2sin(x) + 1 = 1/sin(x).

Now, let's solve for x in the interval 0 < x < 2π. We can multiply both sides of the equation by sin(x) to eliminate the denominator. This gives us 2sin^2(x) + sin(x) - 1 = 0. Next, we can factor the quadratic equation or use the quadratic formula to find the solutions for sin(x). Solving the equation, we get sin(x) = 1/2 or sin(x) = -1.

For sin(x) = 1/2, we find the solutions x = π/6 and x = 5π/6 within the given interval. For sin(x) = -1, we find x = 3π/2.

Therefore, the solutions for x in the interval 0 < x < 2π are x = π/6, x = 5π/6, and x = 3π/2.

Learn more about Equation : brainly.com/question/20972755

#SPJ11

2 1. Let f(x, y, z) = xyz + x+y+z+1. Find the gradient ∇f and divergence div(∇f), and then calculate curl(∇f) at point (1,1,1).

Answers

The gradient of f(x, y, z) is ∇f = (yz + 1, xz + 1, xy + 1), the divergence of ∇f is div(∇f) = 2, and the curl of ∇f at the point (1, 1, 1) is (0, 0, 0).

The gradient of a scalar function f(x, y, z) is given by ∇f = (∂f/∂x, ∂f/∂y, ∂f/∂z), where ∂f/∂x, ∂f/∂y, and ∂f/∂z are the partial derivatives of f with respect to x, y, and z, respectively.

In this case, we have f(x, y, z) = xyz + x + y + z + 1. Taking the partial derivatives, we get:

∂f/∂x = yz + 1

∂f/∂y = xz + 1

∂f/∂z = xy + 1

Therefore, the gradient of f(x, y, z) is ∇f = (yz + 1, xz + 1, xy + 1).

The divergence of a vector field F = (F₁, F₂, F₃) is given by div(F) = ∂F₁/∂x + ∂F₂/∂y + ∂F₃/∂z.

Taking the partial derivatives of ∇f = (yz + 1, xz + 1, xy + 1), we have:

∂(yz + 1)/∂x = 0

∂(xz + 1)/∂y = 0

∂(xy + 1)/∂z = 0

Therefore, the divergence of ∇f is div(∇f) = 0 + 0 + 0 = 0.

Finally, the curl of a vector field is defined as the cross product of the del operator (∇) with the vector field. Since ∇f is a gradient, its curl is always zero. Therefore, the curl of ∇f at any point, including (1, 1, 1), is (0, 0, 0).

Hence, the gradient of f is ∇f = (yz + 1, xz + 1, xy + 1), the divergence of ∇f is div(∇f) = 0, and the curl of ∇f at point (1, 1, 1) is (0, 0, 0).

Learn more about cross product here:

https://brainly.com/question/29097076

#SPJ11

Determine whether the following objects intersect or not. If they intersect at a single point, describe the intersection (could be a point, a line, etc.) (a) The lines given by r = (4 + t, -21,1 + 3t) and = x = 1-t, y = 6 + 2t, z = 3 + 2t. (b) The lines given by x= 1 + 2s, y = 7 - 3s, z= 6 + s and x = -9 +6s, y = 22 - 9s, z = 1+ 3s. = (c) The plane 2x - 2y + 3z = 2 and the line r= (3,1, 1 – t). (d) The planes x + y + z = -1 and x - y - z = 1.

Answers

(a) The lines intersect at the point (5/2, -21, -7/2).

(b) The lines intersect at the point (-4, 11, 7/2).

(c) The plane and line intersect at the point (3, 1, -2).

(d) The planes x + y + z = -1 and x - y - z = 1 intersect along a line.

(a) The lines given by r = (4 + t, -21, 1 + 3t) and r = (x = 1-t, y = 6 + 2t, z = 3 + 2t):

To determine if the lines intersect, we need to equate the corresponding components and solve for t:

4 + t = 1 - t

Simplifying the equation, we get:

2t = -3

t = -3/2

Now, substituting the value of t back into either equation, we can find the point of intersection:

r = (4 + (-3/2), -21, 1 + 3(-3/2))

r = (5/2, -21, -7/2)

(b) The lines given by x = 1 + 2s, y = 7 - 3s, z = 6 + s and x = -9 + 6s, y = 22 - 9s, z = 1 + 3s:

Similarly, to determine if the lines intersect, we equate the corresponding components and solve for s:

1 + 2s = -9 + 6s

Simplifying the equation, we get:

4s = -10

s = -5/2

Substituting the value of s back into either equation, we can find the point of intersection:

r = (1 + 2(-5/2), 7 - 3(-5/2), 6 - 5/2)

r = (-4, 11, 7/2)

(c) The plane 2x - 2y + 3z = 2 and the line r = (3, 1, 1 - t):

To determine if the plane and line intersect, we substitute the coordinates of the line into the equation of the plane:

2(3) - 2(1) + 3(1 - t) = 2

Simplifying the equation, we get:

6 - 2 + 3 - 3t = 2

-3t = -9

t = 3

Substituting the value of t back into the equation of the line, we can find the point of intersection:

r = (3, 1, 1 - 3)

r = (3, 1, -2)

(d) The planes x + y + z = -1 and x - y - z = 1:

To determine if the planes intersect, we compare the equations of the planes. Since the coefficients of x, y, and z in the two equations are different, the planes are not parallel and will intersect in a line.

Learn more about planes:

https://brainly.com/question/28247880

#SPJ11

pls
solve a & b. show full work pls thanks
(a) Find a Cartesian equation for the curve given by parametric T 37 equations 2 = 2 + sint, y = 3 + cost,

Answers

The cartesian equation for the curve defined by the parametric equations x = 2 + sin(t) and y = 3 + cos(t) is:

x² + y² - 4x - 6y + 11 = 0

(b) to find the slope of the curve at a specific point, we need to find the derivative dy/dx and evaluate it at that point.

to find a cartesian equation for the curve given by the parametric equations x = 2 + sin(t) and y = 3 + cos(t), we can eliminate the parameter t by solving for t in terms of x and y and then substituting back into one of the equations.

let's solve the first equation, x = 2 + sin(t), for sin(t):sin(t) = x - 2

similarly, let's solve the second equation, y = 3 + cos(t), for cos(t):

cos(t) = y - 3

now, we can use the trigonometric identity sin²(t) + cos²(t) = 1 to eliminate the parameter t:(sin(t))² + (cos(t))² = 1

(x - 2)² + (y - 3)² = 1

expanding and simplifying, we have:x² - 4x + 4 + y² - 6y + 9 = 1

x² + y² - 4x - 6y + 12 = 1x² + y² - 4x - 6y + 11 = 0 let's differentiate the given parametric equations and solve for dy/dx.

differentiating the first equation x = 2 + sin(t) with respect to t, we get:dx/dt = cos(t)

differentiating the second equation y = 3 + cos(t) with respect to t, we get:

dy/dt = -sin(t)

to find dy/dx, we divide dy/dt by dx/dt:dy/dx = (dy/dt)/(dx/dt) = (-sin(t))/(cos(t)) = -tan(t)

now, we need to determine the value of t at the specific point of interest. let's consider the point (x₀, y₀) = (2 + sin(t₀), 3 + cos(t₀)).

to find t₀, we can solve for it using the equation x = 2 + sin(t):

x₀ = 2 + sin(t₀)sin(t₀) = x₀ - 2

t₀ = arcsin(x₀ - 2)

now we can substitute this value of t₀ into the expression for dy/dx to find the slope at the point (x₀, y₀):dy/dx = -tan(t₀) = -tan(arcsin(x₀ - 2))

so, the slope of the curve at the point (x₀, y₀) = (2 + sin(t₀), 3 + cos(t₀)) is -tan(arcsin(x₀ - 2)).

Learn more about interest here:

https://brainly.com/question/25044481

#SPJ11

Assume an initial nutrient amount of I kilograms in a tank with L liters. Assume a concentration of c kg/ L being pumped in at a rate of L/min. The tank is well mixed and is drained at a rate of L/min. Find the equation describing the amount of nutrient in the tank.

Answers

The general solution to this differential equation is N(t) = C * e^(-t) + c * L where C is a constant determined by the initial condition.

To find the equation describing the number of nutrients in the tank, we can set up a differential equation based on the given information.

Let N(t) represent the number of nutrients in the tank at time t.

The rate of change of the nutrient amount in the tank is given by the difference between the inflow and outflow rates:

dN/dt = (concentration of inflow) * (rate of inflow) - (rate of outflow) * (concentration in the tank)

The concentration of inflow is c kg/L, and the rate of inflow is L/min. The rate of outflow is also L/min, and the concentration in the tank can be approximated as N(t)/L, assuming the tank is well mixed.

Substituting these values into the differential equation, we have:

dN/dt = c * L - (L/L) * (N(t)/L)

dN/dt = c * L - N(t)

This is a first-order linear ordinary differential equation.

To learn more about “equation” refer to the https://brainly.com/question/2972832

#SPJ11

find the limit. (if the limit is infinite, enter '[infinity]' or '-[infinity]', as appropriate. if the limit does not otherwise exist, enter dne.) lim x → [infinity] x4 − 6x2 x x3 − x 7

Answers

The limit of the given expression as x approaches infinity is infinity.

To find the limit, we can simplify the expression by dividing both the numerator and the denominator by the highest power of x, which in this case is x^4. By doing this, we obtain (1 - 6/x^2) / (1/x - 7/x^4). Now, as x approaches infinity, the term 6/x^2 becomes insignificant compared to x^4, and the term 7/x^4 becomes insignificant compared to 1/x.

Therefore, the expression simplifies to (1 - 0) / (0 - 0), which is equivalent to 1/0.

When the denominator of a fraction approaches zero while the numerator remains non-zero, the value of the fraction becomes infinite.

Therefore, the limit as x approaches infinity of the given expression is infinity. This means that as x becomes larger and larger, the value of the expression increases without bound.

Learn more about expression here:

https://brainly.com/question/28170201

#SPJ11

Use cylindrical shells to compute the volume. The region bounded by y=x^2 and y = 32 - x^2, revolved about x = -8.
V=_____.

Answers

The volume of the region bounded by y=x^2 and y=32-x^2, revolved about x=-8 using cylindrical shells is 128π cubic units.

To compute the volume of the region bounded by y=x^2 and y=32-x^2, revolved about x=-8 using cylindrical shells, we need to integrate the expression 2πrh*dx, where r is the distance from the axis of revolution to the shell, h is the height of the shell, and dx is the thickness of the shell.

First, we need to find the limits of integration. The curves y=x^2 and y=32-x^2 intersect when x=±4. Therefore, we can integrate from x=-4 to x=4.

Next, we need to express r and h in terms of x. The axis of revolution is x=-8, so r is equal to 8+x. The height of the shell is equal to the difference between the two curves, which is (32-x^2)-(x^2)=32-2x^2.

Substituting these expressions into the integral, we get:

V = ∫[-4,4] 2π(8+x)(32-2x^2)dx

To evaluate this integral, we first distribute and simplify:

V = ∫[-4,4] 64π - 4πx^2 - 16πx^3 dx

Then, we integrate term by term:

V = [64πx - (4/3)πx^3 - (4/4)πx^4] [-4,4]

V = [(256-64-256)+(256+64-256)]π

V = 128π

Therefore, the volume of the region bounded by y=x^2 and y=32-x^2, revolved about x=-8 using cylindrical shells is 128π cubic units.

To know more about cylindrical shells  refer here:

https://brainly.com/question/13025177#

#SPJ11

Consider the improper integral dx. 4x+3 a. Explain why this is an improper integral. b. Rewrite this integral as a limit of an integral. c. Evaluate this integral to determine whether it converges or diverges.

Answers

The given integral, ∫(4x+3)dx, is an improper integral because either the interval of integration is infinite or the integrand has a vertical asymptote within the interval.

The integral ∫(4x+3)dx is improper because the integrand, 4x+3, is defined for all real numbers, but the interval of integration is not specified. To evaluate this integral, we can rewrite it as a limit of an integral. We introduce a variable, a, and consider the integral from a to b, denoted as ∫[a to b](4x+3)dx.

Next, we take the limit as a approaches negative infinity and b approaches positive infinity, resulting in the improper integral ∫(-∞ to ∞)(4x+3)dx.

To evaluate this integral, we integrate the function 4x+3 with respect to x. The antiderivative of 4x+3 is 2x^2+3x. Evaluating the antiderivative at the upper and lower limits of integration, we have [2x^2+3x] from -∞ to ∞.

Evaluating this expression at the limits, we find that the integral diverges because the limits of integration yield ∞ - (-∞) = ∞ + ∞, which is indeterminate. Therefore, the given integral, ∫(4x+3)dx, diverges.

Note: The integral is improper because it involves integration over an infinite interval. The divergence of the integral indicates that the area under the curve of the function 4x+3 from negative infinity to positive infinity is infinite.

Learn more about integral here:

https://brainly.com/question/31059545

#SPJ11


The graph represents the path of a beanbag toss, where y is the horizontal distance (in feet) and y is the height (in feet). The beanbag is tossed a second time so that it travels the same horizontal distance, but reaches a maximum height that is 2 feet less than the maximum height of the first toss. Find the maximum height of the second toss, and then write a function that models the path of the second toss

Answers

The maximum height of the second toss is 6 ft

The equation is y = -0.04x² + 0.8x + 2

Finding the maximum height of the second toss

Given that the second toss has the following:

Same horizontal distanceMaximum height that is 2 feet less than the first toss

The maximum height of the first toss is 8 ft

So, the maximum height of the second toss is 8 - 2 = 6 ft

Writing a function that models the path of the second toss

Using the function details, we have

vertex = (h, k) = (10, 6)

Point = (x, y) = (0, 2)

The function can be calculated as

y = a(x - h)² + k

So, we have

y = a(x - 10)² + 6

Next, we have

a(0 - 10)² + 6 = 2

So, we have

a = -0.04

So, the equation is

y = -0.04(x - 10)² + 6

Expand

y = -0.04(x² - 20x + 100 + 6

Expand

y = -0.04x² + 0.8x + 2

Hence, the equation is y = -0.04x² + 0.8x + 2

Read more about functions at

https://brainly.com/question/10837575

#SPJ1

y = 4x²+x-l
y=6x-2

Pls help asap Will give brainliest

Answers

The value of x is 1/4 or 1 and y is -1/2 or 4.

We can set the right sides of the equations equal to each other:

4x² + x - 1 = 6x - 2

Next, we can rearrange the equation to bring all terms to one side:

4x² + x - 6x - 1 + 2 = 0

4x² - 5x + 1 = 0

Now, solving the equation using splitting the middle term as

4x² - 5x + 1 = 0

4x² - 4x - x + 1 = 0

4x( x-1) - (x-1)= 0

(4x -1) (x-1)= 0

x= 1/4 or x= 1

Now, for y

If x= 1/4, y = 6(1/4) - 2 = 3/2 - 2 = -1/2

If x= 1 then y= 6-2 = 4

Learn more about Equation here:

https://brainly.com/question/29538993

#SPJ1

Given the iterated integral ∫a0∫√a2−y2−a2−y2(2x+y) dxdy,
(a) sketch the region.
(b) convert the integral to polar coordinates and evaluate..

Answers

The given problem involves an iterated integral over a region defined by the equation √(a² - y²) ≤ x ≤ √(a² - y²).the value of the given iterated integral in polar coordinates is (4/3)a³

To sketch the region, we start by analyzing the bounds of integration. The equation √(a²- y²) represents a semicircle centered at the origin with a radius of 'a'. As y varies from 0 to a, the corresponding x-bounds are given by √(a² - y²). Therefore, the region is the area below the semicircle in the xy-plane.

To convert the integral to polar coordinates, we make use of the transformation equations: x = rcosθ and y = rsinθ. Substituting these into the original integral, we get ∫[0 to π/2]∫[0 to a] (2rcosθ + rsinθ)rdrdθ. Simplifying the integrand, we have ∫[0 to π/2]∫[0 to a] (2²cosθ + r²sinθ)drdθ. Integrating the inner integral with respect to r gives (2/3)a³cosθ + (1/2)a²sinθ. Integrating the outer integral with respect to θ, the final result is (4/3)a³. Therefore, the value of the given iterated integral in polar coordinates is (4/3)a³.

Learn more about area here: https://brainly.com/question/27683633

#SPJ11




2 10 Co = - , 2 Suppose the symmetric equations of lines l1 and 12 are y - 2 2- y = z and r = -1, 3 respectively. (a) Show that I, and l, are skew lines. (b) Find the equation of the line perpendicula

Answers

(a) The lines l1 and l2 are skew lines because they are neither parallel nor intersecting.

(b) The equation of the line perpendicular to both l1 and l2 is of the form:

x = at, y = 2 + 3t and z = 3t

(a) To determine if two lines are skew lines, we check if they are neither parallel nor intersecting.

The symmetric equation of line l1 is given by:

x = t

y - 2 = 2 - t

z = t

The symmetric equation of line l2 is given by:

x = -1 + 3s

y = s

z = 3

From the equations, we can see that the lines are neither parallel nor intersecting.

Hence, l1 and l2 are skew lines.

(b) To find the equation of the line perpendicular to both l1 and l2, we need to find the direction vectors of l1 and l2 and take their cross product.

The direction vector of l1 is given by the coefficients of t: <1, -1, 1>.

The direction vector of l2 is given by the coefficients of s: <3, 1, 0>.

Taking the cross product of these direction vectors, we have:

<1, -1, 1> × <3, 1, 0> = <1, 3, 4>.

Therefore, the equation of the line perpendicular to both l1 and l2 is of the form:

x = at

y = 2 + 3t

z = 3t

where a is a constant.

Learn more about Equation here:

https://brainly.com/question/29018878

#SPJ11

a The first approximation of 37 can be written as where the greatest common divisor of a and bis 1, with b. a = type your answer... b= = type your answer...

Answers

The first approximation of 37 can be written as a/b, where the greatest common divisor of a and b is 1, with b ≠ 0.

To find the first approximation, we look for a fraction a/b that is closest to 37. We want the fraction to have the smallest possible denominator.

In this case, the first approximation of 37 can be written as 37/1, where a = 37 and b = 1. The greatest common divisor of 37 and 1 is 1, satisfying the condition mentioned above.

Therefore, the first approximation of 37 is 37/1.


Learn more about greatest common divisor here: brainly.in/question/4154212
#SPJ11

Can you provide another real world example based off this parametric equation below? provide diagram.
Starting from an airport, an airplane flies 225 miles northwest, then 150 miles south-west.
Draw a graph or figure to represent this situation.
Describe how the concepts from this module can be applied in this case.
How far, in miles, from the airport is the plane?
Provide another example of a scenario that involves the same concept.

Answers

It flies 225 miles northwest and then 150 miles southwest. The graph or figure representing this situation would show the airplane's path and its distance from the airport.

The parametric equation describes the airplane's position as a function of time. In this case, the x-component of the equation represents the east-west direction, while the y-component represents the north-south direction. The airplane's initial position is the origin (0, 0), which is the airport. The first segment of the equation, 225 miles northwest, corresponds to a movement in the negative x-direction and positive y-direction. The second segment, 150 miles southwest, corresponds to a movement in the negative x-direction and negative y-direction.

To represent this situation graphically, we can plot the airplane's position at different points in time. The x-axis represents the east-west direction, and the y-axis represents the north-south direction. Starting from the origin, we would plot a point at (-225, 225) to represent the airplane's position after flying 225 miles northwest. Then, we would plot a second point at (-375, 75) to represent the airplane's position after flying an additional 150 miles southwest. The resulting graph or figure would show the airplane's path and its distance from the airport.

In this scenario, the distance from the airport to the airplane can be calculated using the Pythagorean theorem. The distance is the hypotenuse of a right triangle formed by the x and y components of the airplane's position. From the last plotted point (-375, 75), the distance from the origin can be calculated as the square root of (-375)^2 + 75^2, which is approximately 384.5 miles.

Another example that involves the same concept could be a hiker starting from a base camp and following a parametric equation for their journey. The equation could describe the hiker's position as a function of time or distance traveled. The graph or figure representing this scenario would show the hiker's path and their distance from the base camp at different points in time or distance. The concepts of parametric equations and distance calculations using the Pythagorean theorem would be applicable in analyzing the hiker's position and distance from the base camp.

Learn more about Pythagorean here:

https://brainly.com/question/28032950

#SPJ11

a. Use the product rule to find the derivative of the given function b. Find the derivative by expanding the product first h(z)= (4 -z?) (22 -32+4) a. Use the product rule to find the derivative of th

Answers

a)Using the product rule to find the derivative of the function: Simplifying this expression, we get d/dz(h(z)) = -8z³ + 20z² + 24z - 88.

The product rule states that for two functions u(x) and v(x), the derivative of their product is given by d/dx(u(x) * v(x))

= u(x) * dv/dx + v(x) * du/dx.

Let's apply this to the given function: h(z) = (4 - z²)(22 - 32z + 4z²)

Now, let's denote the first function as u(z) = 4 - z² and the second function as v(z) = 22 - 32z + 4z².

So, we have h(z) = u(z) * v(z).

Now, let's apply the product rule, d/dz(u(z) * v(z)) = u(z) * dv/dz + v(z) * du/dz, where du/dz is the derivative of the first function and dv/dz is the derivative of the second function with respect to z.

The derivative of u(z) is given by du/dz = -2z and the derivative of v(z) is given by dv/dz = -32 + 8z.

Putting these values in the product rule formula, we get:

d/dz(h(z)) = (4 - z²) * (-32 + 8z) + (22 - 32z + 4z²) * (-2z).

Simplifying this expression, we get d/dz(h(z)) = -8z³ + 20z² + 24z - 88.

b)Finding the derivative by expanding the product first: We can also find the derivative by expanding the product first and then taking its derivative.

This is done as follows:

h(z) = (4 - z²)(22 - 32z + 4z²)= 88 - 128z + 16z² - 22z² + 32z³ - 4z⁴

Taking the derivative of this expression,

we get d/dz(h(z)) = -8z³ + 20z² + 24z - 88, which is the same result as obtained above using the product rule.

To know more about product rule

https://brainly.com/question/847241

#SPJ11

Find all solutions to the equation below on the interval 0, 2pi):
sin 4x = - sqrt2/2

Answers

The equation sin(4x) = -√2/2 can be solved to find all solutions on the interval 0 to 2π. To do this, we can use the inverse sine function, also known as arcsin or sin^(-1), to find the angles that satisfy the equation.

The value -√2/2 corresponds to the sine of -π/4 and 7π/4, which are two angles that fall within the interval 0 to 2π. We can express these angles as:

4x = -π/4 + 2πk, where k is an integer,

4x = 7π/4 + 2πk, where k is an integer.

Solving for x in each equation, we get:

x = (-π/4 + 2πk)/4,

x = (7π/4 + 2πk)/4.

Simplifying further, we have:

x = -π/16 + πk/2,

x = 7π/16 + πk/2.

The solutions for x in the interval 0 to 2π are obtained by substituting different integer values for k. These solutions represent the angles at which sin(4x) equals -√2/2.

In summary, the solutions to the equation sin(4x) = -√2/2 on the interval 0 to 2π are given by x = -π/16 + πk/2 and x = 7π/16 + πk/2, where k is an integer.

Learn more about equation here : brainly.com/question/29657983

#SPJ11

(20 marks in total) Compute the following limits. If the limit does not exist, explain why. (No marks will be given if l'Hospital's rule is used.) (a) (5 marks) lim COS I 2 + cot² x t² =) I-T sin²

Answers

We need to compute the limit of the expression[tex]\frac{ (cos(2x) + cot^2(x))}{(t^2 - sin^2(x))}[/tex] as x approaches 0. If the limit exists, we'll evaluate it, and if it doesn't, we'll explain why.

To find the limit, we substitute the value 0 into the expression and simplify:

lim(x→0)[tex]\frac{ (cos(2x) + cot^2(x))}{(t^2 - sin^2(x))}[/tex]

When we substitute x = 0, we get:

[tex]\frac{(cos(0) + cot^2(0))}{(t^2 - sin^2(0))}[/tex]

Simplifying further, we have:

[tex]\frac{(1 + cot^2(0))}{(t^2 - sin^2(0))}[/tex]

Since cot(0) = 1 and sin(0) = 0, the expression becomes:

[tex]\frac{(1 + 1)}{(t^2 - 0)}[/tex]

Simplifying, we get:

[tex]\frac{2}{t^2}[/tex]

As x approaches 0, the limit becomes:

lim(x→0) [tex]\frac{2}{t^2}[/tex]

This limit exists and evaluates to [tex]\frac{2}{t^2}[/tex] as x approaches 0.

Therefore, the limit of the given expression as x approaches 0 is [tex]\frac{2}{t^2}[/tex].

To learn more about limit visit:

https://brainly.com/question/14989538

#SPJ11

Calculus derivative problem: Given that f(x)=(x+|x|)^2+1, what
is f `(0) = ?

Answers

The derivative of f(x) = (x + |x|)^2 + 1 evaluated at x = 0 is f'(0) = 2. f'(0) = 0, indicating that the derivative of f(x) at x = 0 is 0.

To find the derivative of f(x), we need to consider the different cases separately for x < 0 and x ≥ 0 since the absolute value function |x| is involved.

For x < 0, the function f(x) becomes f(x) = (x - x)^2 + 1 = 1.

For x ≥ 0, the function f(x) becomes f(x) = (x + x)^2 + 1 = 4x^2 + 1.

To find the derivative, we take the derivative of each case separately:

For x < 0: f'(x) = 0, since f(x) is a constant.

For x ≥ 0: f'(x) = d/dx (4x^2 + 1) = 8x.

Now, to find f'(0), we need to evaluate the derivative at x = 0:

f'(0) = 8(0) = 0.

Therefore, f'(0) = 0, indicating that the derivative of f(x) at x = 0 is 0.

Learn more about absolute value function here:

brainly.com/question/29004017

#SPJ11








Tutorial Exercise Find the dimensions of a rectangle with perimeter 64 m whose area is as large as possible. Step 1 Let I and w represent the length and the width of the rectangle, measured in m. Let

Answers

To find the dimensions of a rectangle with a perimeter of 64 m and the largest possible area, we can use calculus to determine that the rectangle should be a square. Answer we get is largest possible area is a square with sides measuring 16 m each.

Let's start by setting up the equations based on the given information. We know that the perimeter of a rectangle is given by the formula P = 2(I + w), where I represents the length and w represents the width. In this case, the perimeter is 64 m, so we have 64 = 2(I + w).

To find the area of a rectangle, we use the formula A = I * w. We want to maximize the area, so we need to express it in terms of a single variable. Using the perimeter equation, we can rewrite it as w = 32 - I.

Substituting this value of w into the area equation, we get A = I * (32 - I) = 32I - I^2. To find the maximum value of the area, we can take the derivative of A with respect to I and set it equal to zero.

Taking the derivative, we get dA/dI = 32 - 2I. Setting this equal to zero and solving for I, we find I = 16. Since the length and width must be positive, we can discard the solution I = 0.

Thus, the rectangle with a perimeter of 64 m and the largest possible area is a square with sides measuring 16 m each.

Learn more about calculus here: brainly.com/question/31801938

#SPJ11

3,9 -Ounce bowl 0,52$ , 24-ounce jar 2,63$
a store sells applesauce in two sizes. a. how many bowls of applesauce fit in a jar? round your answer to the nearest hundredth.
a. how many bowls of applesauce fit in a jar ?
b. explain two ways to find the better buy
c. what is the better buy ?

Answers

The 24-ounce jar of applesauce is the better buy compared to the ounce bowl, as it can fit approximately 46.15 bowls and has a lower price per ounce and total cost.

To determine how many bowls of applesauce fit in a jar, we need to compare the capacities of the two containers.

a. To find the number of bowls that fit in a jar, we divide the capacity of the jar by the capacity of the bowl:

Number of bowls in a jar = Capacity of jar / Capacity of bowl

Given that the bowl has a capacity of 0.52 ounces and the jar has a capacity of 24 ounces:

Number of bowls in a jar = 24 ounces / 0.52 ounces ≈ 46.15 bowls

Rounded to the nearest hundredth, approximately 46.15 bowls of applesauce fit in a jar.

b. Two ways to find the better buy between the bowl and the jar:

Price per ounce: Calculate the price per ounce for both the bowl and the jar by dividing the cost by the capacity in ounces. The product with the lower price per ounce is the better buy.

Price per ounce for the bowl = $0.52 / 0.52 ounces = $1.00 per ounce

Price per ounce for the jar = $2.63 / 24 ounces ≈ $0.11 per ounce

In this comparison, the jar has a lower price per ounce, making it the better buy.

Price comparison: Compare the total cost of buying multiple bowls versus buying a single jar. The product with the lower total cost is the better buy.

Total cost for the bowls (46 bowls) = 46 bowls * $0.52 per bowl = $23.92

Total cost for the jar = $2.63

In this comparison, the jar has a lower total cost, making it the better buy.

c. Based on the price per ounce and the total cost comparisons, the 24-ounce jar of applesauce is the better buy compared to the ounce bowl.

To know more about price per ounce,

https://brainly.com/question/30221348

#SPJ11

: A company estimates that its sales will grow continuously at a rate given by the function S'(t) = 30 e! where S' (t) is the rate at which sales are increasing, in dollars per day, on dayt a) Find the accumulated sales for the first 6 days. b) Find the sales from the 2nd day through the 5th day. (This is the integral from 1 to 5.) a) The accumulated sales for the first 6 days is $ (Round to the nearest cent as needed.)

Answers

To find the accumulated sales for the first 6 days, we need to integrate the given sales growth rate function, S'(t) = 30e^t, over the time interval from 0 to 6. The sales from the 2nd day through the 5th day is approximately $4,073.95, rounded to the nearest cent.

Integrating S'(t) with respect to t gives us the accumulated sales function, S(t), which represents the total sales up to a given time t. The integral of 30e^t with respect to t is 30e^t, since the integral of e^t is simply e^t.

Applying the limits of integration from 0 to 6, we can evaluate the accumulated sales for the first 6 days:

∫[0 to 6] (30e^t) dt = [30e^t] [0 to 6] = 30e^6 - 30e^0 = 30e^6 - 30.

Using a calculator, we can compute the numerical value of 30e^6 - 30, which is approximately $5,727.98. Therefore, the accumulated sales for the first 6 days is approximately $5,727.98, rounded to the nearest cent.

Now let's move on to part b) to find the sales from the 2nd day through the 5th day. We need to integrate the sales growth rate function from day 1 to day 5 (the interval from 1 to 5).

∫[1 to 5] (30e^t) dt = [30e^t] [1 to 5] = 30e^5 - 30e^1.

Again, using a calculator, we can compute the numerical value of 30e^5 - 30e^1, which is approximately $4,073.95. Therefore, the sales from the 2nd day through the 5th day is approximately $4,073.95, rounded to the nearest cent.

Learn more about growth rate here: https://brainly.com/question/28869954

#SPJ11

The coordinates (0, A) and (B, 0) lie on the line 2x - 3y = 6. What are the values of A and B? b) Use your answer to part a) to work out which line below is 2x - 3y = 6

25 points for the correct answer. ​

Answers

The values of A and B are -2 and 3 respectively, the line 2x - 3y = 6 is equivalent to the line x = 3.

To find the values of A and B, we can substitute the coordinates (0, A) and (B, 0) into the equation 2x - 3y = 6.

For the point (0, A):

2(0) - 3(A) = 6

0 - 3A = 6

-3A = 6

A = -2

So, A = -2.

For the point (B, 0):

2(B) - 3(0) = 6

2B = 6

B = 3

So, B = 3.

Therefore, the values of A and B are A = -2 and B = 3.

b) Now that we know the values of A and B, we can substitute them into the equation 2x - 3y = 6:

2x - 3y = 6

2x - 3(0) = 6 (substituting y = 0)

2x = 6

x = 3

So, the line 2x - 3y = 6 is equivalent to the line x = 3.

To learn more on Equation:

https://brainly.com/question/10413253

#SPJ1

(d) is this an appropriate prediction? why or why not? this an appropriate prediction since the value of is the range of the data.

Answers

No, this is not an appropriate prediction. While the range of data can provide some useful information about the spread of the data, it should not be relied upon as the sole basis for evaluating the validity of a prediction.

The statement that "this is an appropriate prediction since the value of 'd' is the range of the data" is not a valid justification for the appropriateness of a prediction. The range of data only gives information about the spread of the data and does not provide any insight into the relationship between the variables being analyzed.

In order to determine the appropriateness of a prediction, one needs to consider various factors such as the nature of the variables being analyzed, the type of analysis being conducted, the sample size, and the potential sources of bias or confounding. The range of data alone cannot provide a sufficient basis for evaluating the validity of a prediction. For instance, if we are predicting the likelihood of an individual developing a certain health condition based on their age, gender, and lifestyle factors, the range of the data may not be a relevant factor. Instead, we would need to consider how strongly each of the predictive factors is associated with the outcome, and whether there are any other factors that might influence the relationship.

To know more about range visit :-

https://brainly.com/question/29204101

#SPJ11


(25 points) Find the solution of cay" + 5xy' + (4 – 3x)y=0, x > 0 of the form Y1 Gez", 10 where co = 1. Enter T= cn = , n=1,2,3,...

Answers

The solution of cay" + 5xy' + (4 – 3x)y=0, x > 0 of the form Y1 Gez", 10 where co = 1 is

T = {e^((-5x + √(25x² + 12x - 16))/2)z, e^((-5x - √(25x² + 12x - 16))/2)z}

n = 1, 2, 3, ...

To find the solution of the differential equation cay" + 5xy' + (4 – 3x)y = 0, where x > 0, of the form Y₁ = e^(λz), we can substitute Y₁ into the equation and solve for λ. Given that c = 1, we have:

1 * (e^(λz))'' + 5x * (e^(λz))' + (4 - 3x) * e^(λz) = 0

Differentiating Y₁, we have:

λ²e^(λz) + 5xλe^(λz) + (4 - 3x)e^(λz) = 0

Factoring out e^(λz), we get:

e^(λz) * (λ² + 5xλ + 4 - 3x) = 0

Since e^(λz) ≠ 0 (for any real value of λ and z), we must have:

λ² + 5xλ + 4 - 3x = 0

Now we can solve this quadratic equation for λ. The quadratic formula can be used:

λ = (-5x ± √(5x)² - 4(4 - 3x)) / 2

Simplifying further:

λ = (-5x ± √(25x² - 16 + 12x)) / 2

λ = (-5x ± √(25x² + 12x - 16)) / 2

Since we're looking for real solutions, the discriminant inside the square root (√(25x² + 12x - 16)) must be non-negative:

25x² + 12x - 16 ≥ 0

To find the solution for x > 0, we need to determine the range of x that satisfies this inequality.

Solving the inequality, we get:

(5x - 2)(5x + 8) ≥ 0

This gives two intervals:

Interval 1: x ≤ -8/5

Interval 2: x ≥ 2/5

However, since we are only interested in x > 0, the solution is x ≥ 2/5.

Therefore, the solution of the form Y₁ = e^(λz), where λ = (-5x ± √(25x² + 12x - 16)) / 2, is valid for x ≥ 2/5.

Learn more about differentiation at https://brainly.com/question/24062595

#SPJ11

Apply Gaussian elimination to determine the solution set of the given system. (Let a represent an arbitrary number. If the system is inconsistent, enter INCONSISTENT.) X, - x2 + 4x3 = 0 -2x, + x2 + x3

Answers

The solution set of the given system is {x = 0, x2 = 4a, x3 = -2a}, where 'a' represents an arbitrary number. The given system of equations can be solved using Gaussian elimination.

The solution set of the system is {x = 0, x2 = 4a, x3 = -2a}, where 'a' represents an arbitrary number.

To solve the system using Gaussian elimination, we perform row operations to transform the augmented matrix into row-echelon form. The resulting matrix will reveal the solution to the system.

Step 1: Write the augmented matrix for the given system:

```

1  -1  4 | 0

-2  1   1 | 0

```

Step 2: Perform row operations to achieve row-echelon form:

R2 = R2 + 2R1

```

1  -1   4 | 0

0  -1   9 | 0

```

Step 3: Multiply R2 by -1:

```

1  -1   4 | 0

0   1  -9 | 0

```

Step 4: Add R1 to R2:

R2 = R2 + R1

```

1  -1   4 | 0

0   0  -5 | 0

```

Step 5: Divide R2 by -5:

```

1  -1   4 | 0

0   0   1 | 0

```

Step 6: Subtract 4 times R2 from R1:

R1 = R1 - 4R2

```

1  -1   0 | 0

0   0   1 | 0

```

Step 7: Subtract R1 from R2:

R2 = R2 - R1

```

1  -1   0 | 0

0   0   1 | 0

```

Step 8: The resulting matrix is in row-echelon form. Rewriting the system in equation form:

```

x - x2 = 0

x3 = 0

```

Step 9: Solve for x and x2:

From equation 2, we have x3 = 0, which means x3 can be any value.

From equation 1, we substitute x3 = 0:

x - x2 = 0

x = x2

Therefore, the solution set is {x = 0, x2 = 4a, x3 = -2a}, where 'a' represents an arbitrary number.

In summary, the solution set of the given system is {x = 0, x2 = 4a, x3 = -2a}, where 'a' represents an arbitrary number.

Learn more about arbitrary number here:

brainly.com/question/4786681

#SPJ11

State Whether The Two Variables Are Positively Correlated, Negatively Correlated, Or Not Correlated The Age Of A Textbook And How Well It Is Written O A. Positively Correlated O B. Negatively Correlated O
C. Not Correlated

Answers

C. Not Correlated. The age of a textbook and how well it is written are not inherently linked or related.

The age of a textbook does not necessarily determine how well it is written, and vice versa. Therefore, there is no apparent correlation between the two variables.

Correlation between two variables, we are looking for a relationship or connection between them. Specifically, we want to see if changes in one variable are related to changes in the other variable.

In the case of the age of a textbook and how well it is written, there is no inherent connection between the two. The age of a textbook refers to how old it is, which is a measure of time. On the other hand, how well a textbook is written is a subjective measure of its quality or effectiveness in conveying information.

Just because a textbook is older does not necessarily mean it is poorly written or vice versa. Likewise, a newer textbook is not automatically better written. The quality of writing in a textbook is influenced by various factors such as the author's expertise, writing style, and editorial process, which are independent of its age.

Therefore, we can conclude that the age of a textbook and how well it is written are not correlated. There is no clear relationship between the two variables, and changes in one variable do not consistently correspond to changes in the other variable.

Learn more about Correlated here:

https://brainly.com/question/30116167

#SPJ11

Solve the following equations. List all possible solutions
on the interval (0, 2). Leave answers in exact form.
tan^2 a + tan a =

Answers

The possible solutions to the equation tan²(a) + tan(a) = 0 on the interval (0, 2) are a = 0, 3π/4, π, 5π/4, 2π, etc.

The equation to be solved is:

tan²(a) + tan(a) = 0

To find the solutions on the interval (0, 2), we can factor the equation:

tan(a) * (tan(a) + 1) = 0

This equation will be satisfied if either tan(a) = 0 or tan(a) + 1 = 0.

1) For tan(a) = 0:

We know that tan(a) = sin(a)/cos(a), so tan(a) = 0 when sin(a) = 0. This occurs at a = 0, π, 2π, etc.

2) For tan(a) + 1 = 0:

tan(a) = -1

a = arctan(-1)

a = 3π/4

To solve the equation, we first factor it by recognizing that it is a quadratic equation in terms of tan(a). We then set each factor equal to zero and solve for the values of a. For tan(a) = 0, we know that the sine of an angle is zero at the values a = 0, π, 2π, etc. For tan(a) + 1 = 0, we find the value of a by taking the arctangent of -1, which gives us a = 3π/4. Thus, the solutions on the interval (0, 2) are a = 0, 3π/4, π, 5π/4, 2π, etc.

learn more about Interval here:

https://brainly.com/question/32550041

#SPJ4

Other Questions
Please show all work & DO NOT USE A CALCULATOREXPLAIN YOUR REASONINGQuestion 4 12 pts Determine if the series converges or diverges. 3 . [Select] nh n=1 2n B. (n + 2)! (-1) 20 - (2n) Select] n=0 C. -2/5 n [Select ] MiM n2 2 n - 2 D. n2 + 3n n=1 3) [Select] 3 Safe Inc. is a manufacturer of safes. The following information is available from the company's budgets: July August September October November Sales $1,106 $2,215 $1,603 $1,515 $1,907 All sales of Safe Inc. are credit sales: they collect 46% of cash later in the same month, 30% in the next month, and the remaining part in two months. What is the amount of Accounts Receivable in the budgeted balance sheet of Safe Inc. prepared for November 1? Assume there are no transactions registered on November 1. A) 18 B) 17 52) x2.7 52) h(x) = x+6 (x-2 A) - 8 if x2-6 :h(-6) if x. -6 B) undefined C) 8 D) -4 53) -1 By definition, theoretical probability is equal to:A. No. of favorable outcomes/ total no. of possible outcomes B. No. of total outcomes/ total no. of impossible outcomesC. No. of possible outcomes/ total no. of favorable outcomesD. No. of total outcomes/ total no. of possible outcomes Robert has some nickels and some dimes. He has a maximum of 29 coins worth no less than $2.20 combined. If Robert has 10 nickels, determine all possible values for the number of dimes that he could have. Your answer should be a comma separated list of values. If there are no possible solutions, submit an empty answer. A defense contractor, is developing a cash budget for October, November, and December. The company's purchases in August and September were $120,000 and $150,000 respectively. Purchases of $170,000, $160,000 and $140,000 have been forecast for October, November, and December. 10% will be paid immediately in cash, 70% is paid the month following the purchase, and the remaining 20% is paid two months following the purchase. Rent of $20,000 will be paid each month. . . Wages and salaries amount to 20% of the preceding month's sales. The beginning cash balance on October 1 is $22,000. The company also wishes to maintain a minimum cash balance of $15,000. Forecasted cash receipts for October, November, and December are 218, 200 and 175 respectively. . . Using the above information, prepare Q4 cash budget. During selection, a job applicants past performance, experience and education are all examples of ____________.a) Group of answer choicesb) elements of job performancec) selection criteriad) predictors of selection criteriae) none of the suggested answers is correct For a letter sorting job, applicants are given a speed-reading test. Assume scores are normally distributed, with a mean of 73.9 and a standard deviation of 8.09. If only the top 21% of the applicants are selected, find the cutoff score. Draw apicture of the situation. two 18 cm -long thin glass rods uniformly charged to 18nc are placed side by side, 4.0 cm apart. what are the electric field strengths e1 , e2 , and e3 at distances 1.0 cm , 2.0 cm , and 3.0 cm to the right of the rod on the left, along the line connecting the midpoints of the two rods? A patient complains about the taste of the sublingual nitroglycerin and admits that he swallows it rather than holding it under his tongue. The nurse explains that sublingual medications.a. should not be swallowed because it alters the absorption potential.b. can be inserted rectally without loss of absorption potentialc. can be held against the roof of the mouth with the tongue to reduce taste.d. can be taken between the cheek and tongue to diminish taste. a client with bipolar disorder has been following the prescribed medication regimen. the client indicates to the nurse a desire to stop the medication now that the client is feeling better. the nurse tells the client that most likely the client will have to remain on the medication for life to keep the condition under control. the nurse is practicing which principle? Please help me as fast as possible! I really need help! Ill mark as brainliest for correct answers. Please help fast please the leader who builds an enduring great organization through a combination of personal humility and professional resolve is a ____ leader how to set up scheduled payroll liabilities in quickbooks desktop True/false: disintermediation provides major benefits to the distributor According to Shamir, the vision articulated by charismatic leaders emphasizes: a. specific, challenging performance objectivesb. tangible benefits that justify exceptional follower effortc. symbolic and expressive aspects of the work itselfd. factual evidence about the feasibility of the objectives johanna is a therapist who helps clients work toward solutions to their symptoms and problems. these solutions involve changing the clients' thoughts and behaviors. johanna is practicing Restrict Telnet and SSH AccessYou are in the process of configuring a new router. The router interfaces will connect to the following networks:InterfaceNetworkFastEthernet0/0192.168.1.0/24FastEthernet0/1192.168.2.0/24FastEthernet0/1/0192.168.3.0/24Only Telnet and SSH access from these three networks should be allowed.In this lab, your task is to:Create a standard access list number 5 using the access-list command.Add a permit statement for each network to the access list.Apply the access list to VTY lines 0-4 using the access-class command. Use the in direction to filter incoming traffic.Save your changes in the startup-config file.Select Router.Press Enter to get started.At the Router> prompt, type enable and press Enter.At the Router# prompt, type config t and press Enter.At the Router(config)# prompt, type access-list 5 permit 192.168.1.0 0.0.0.255 and press Enter.At the Router(config)# prompt, type access-list 5 permit 192.168.2.0 0.0.0.255 and press Enter.At the Router(config)# prompt, type access-list 5 permit 192.168.3.0 0.0.0.255 and press Enter.At the Router(config)# prompt, type line vty 0 4 and press Enter.At the Router(config-line)# prompt, type access-class 5 in and press Enter.Press Ctrl + Z.At the Router# prompt, type copy run start and press Enter.Press Enter to begin building the configuration. The Divergence of a Vector Field OPEN Turned in a ITEMS INFO 9. Try again Practice similar Help me with this You have answered 1 out of 2 parts correctly. Let + = (36ax + 2ay?)i + (223 3ay); (32 + 2x2 + 2y?)k. (a) Find the value(s) of a making div F = 0 a a = (Enter your value, or if you have more than one, enter a comma-separated list of your values.) (b) Find the value(s) of a making div a minimum a = 1 24 (Enter your value, or if you have more than one, enter a comma-separated list of your values.) A copy constructor often doesnt work as intended when creating descendants of a base class. In such cases, it is common to create a , which works better because of polymorphism.A. clone methodB. no-arg constructorC. base class method using the descendant classs nameD. full constructor