Q.2 Ow Use an appropriate form of chain rule to find ди aw है| and at (u. v) = (1.-2) if w=x*y? -x +2y, x-vu, y=w X- [ 2 Marks ]

Answers

Answer 1

The value of the partial derivatives at the point (1,-2) are ∂w/∂u = (-3y² + 3) and ∂w/∂v = (-3y² + 3).

To find the partial derivatives of w with respect to u and v using the chain rule, we can proceed as follows:

w = x*y² - x + 2y

x = v*u

y = w*x - 2

We want to find ∂w/∂u and ∂w/∂v at the point (u,v) = (1,-2).

First, let's find ∂w/∂u:

Using the chain rule, we have:

∂w/∂u = (∂w/∂x) * (∂x/∂u) + (∂w/∂y) * (∂y/∂u)

∂w/∂x = y² - 1

∂x/∂u = v

∂w/∂y = 2xy + 2

∂y/∂u = (∂w/∂u) * (∂x/∂u) = (∂w/∂u) * v = v*(y² - 1)

Substituting these values, we get:

∂w/∂u = (y² - 1) * v + (2xy + 2) * v*(y² - 1)

Now, let's find ∂w/∂v:

Using the chain rule again, we have:

∂w/∂v = (∂w/∂x) * (∂x/∂v) + (∂w/∂y) * (∂y/∂v)

∂x/∂v = u

∂y/∂v = (∂w/∂v) * (∂x/∂v) = (∂w/∂v) * u = u*(y² - 1)

Substituting these values, we get:

∂w/∂v = (y² - 1) * u + (2xy + 2) * u*(y² - 1)

Finally, we can evaluate ∂w/∂u and ∂w/∂v at the given point (u,v) = (1,-2) by substituting the values of u and v into the respective expressions.

So, ∂w/∂u = (-3y² + 3) and

∂w/∂v = (-3y² + 3).

The complete question is:

"Use an appropriate form of chain rule to find ∂w/∂u and ∂w/∂v at the point (u,v) = (1,-2) if w = x*y² - x + 2y, x = v*u, y = w*x - 2."

Learn more about partial derivatives:

https://brainly.com/question/31399205

#SPJ11


Related Questions

Find where y is defined as a function of x implicitly by the dc y equation below. –6x2 - y2 = 11 Suppose f contains a local extremum at c, but is NOT differentiable at c. Which of the following is true? A. f'(c) = 0 B. f'(c) < 0 C. f'(c) > 0 D. f'(c) does not exist.

Answers

The statement "Suppose f contains a local extremum at c but is NOT differentiable at c" indicates that the function has a local extremum at point c, but its derivative does not exist at that point. Therefore, the correct answer is D. f'(c) does not exist.

When a function has a local extremum at a point c, the derivative of the function at that point is typically zero.

However, in this case, the function is stated to be not differentiable at point c. Differentiability is a necessary condition for a function to have a well-defined derivative at a particular point.

If a function is not differentiable at a point, it means that the function does not have a well-defined tangent line at that point, and consequently, the derivative does not exist.

This lack of differentiability can occur due to sharp corners, cusps, or vertical tangents, among other reasons.

Since the function f is not differentiable at point c, the derivative f'(c) does not exist. Therefore, the correct answer is D. f'(c) does not exist.

To learn more about local extremum visit:

brainly.com/question/31859399

#SPJ11

which of the following sets of vectors best describes the velocity, acceleration, and net force acting on the cylinder at the point indicated in the diagram?

Answers

The set of vectors that best describes the velocity, acceleration, and net force acting on the cylinder at the indicated point in the diagram depends on the specific information provided in the diagram.

However, in general, the velocity vector describes the direction and magnitude of an object's motion, the acceleration vector represents the rate of change of velocity, and the net force vector indicates the overall force acting on the object.

In the context of a cylinder, the velocity vector would typically point in the direction of the cylinder's motion and have a magnitude corresponding to its speed. The acceleration vector might point in the direction of the change in velocity and provide information about how the speed or direction of the cylinder is changing. The net force vector would align with the direction of the force acting on the cylinder and indicate the magnitude and direction of the resultant force.

Learn more about vectors here:

https://brainly.com/question/30958460

#SPJ11

which of the following sets of vectors best describes the velocity, acceleration, and net force acting on a cylinder?

Find the points on the given curve where the tangent line is horizontal or vertical. (Assume 0 S 0 < 216. comma-separated list of ordered pairs.) r = 1 + cos(O) horizontal tangent (r, 0) = vertical tangent (,0) = [-/1 Points) DETAILS SCALCET8 10.4.504.XP. MY NOTES Find the area of the region that lies inside both curves. p2 = sin(20), p = cos(20)

Answers

The points on the given curve where the tangent line is horizontal or vertical are (2, 0) and (0, π) respectively.

The curve is given by r = 1 + cos(θ).

We have to find the points on the curve where the tangent line is horizontal or vertical.

Let's use the polar form of the equation of tangent line.

Then, the polar equation of tangent is given by

r cos(θ - α) = a, where a is the length of the perpendicular from the origin to the tangent line, and α is the angle between the x-axis and the perpendicular from the origin to the tangent line.

Using the given curve equation, we find the derivative of r with respect to θ and simplify it to get:

dr/dθ = -sin(θ).

Now we equate it to zero, and we obtain the value θ = 0 or π.

So, the values of θ that correspond to horizontal tangent lines are θ = 0 and θ = π.

Now we can plug in θ = 0 and θ = π into the given equation r = 1 + cos(θ) to obtain the corresponding points of tangency, which are:

(2, 0) and (0, π).

Therefore, the points on the given curve where the tangent line is horizontal or vertical are:

(2, 0) and (0, π) respectively.

To know more about tangent lines

https://brainly.com/question/30162650

#SPJ11

suppose that a group of 20 consists of 12 men and 8 women. how many five-person teams from this group contain at least one man?

Answers

there are 15,448 five-person teams from this group that contain at least one man.

The total number of five-person teams that can be formed from a group of 20 people can be calculated using the combination formula, which is denoted as C(n, r) and given by n! / (r!(n-r)!), where n is the total number of individuals in the group and r is the number of people in each team. In this case, we have 20 individuals and we want to form teams of 5, so the total number of five-person teams is C(20, 5) = 20! / (5!(20-5)!) = 15,504.

To calculate the number of all-women teams, we consider that there are 8 women in the group. Therefore, we need to choose 5 women from the 8 available. Using the combination formula, the number of all-women teams is C(8, 5) = 8! / (5!(8-5)!) = 56.

Finally, to find the number of teams that contain at least one man, we subtract the number of all-women teams from the total number of five-person teams: 15,504 - 56 = 15,448.

Learn more about combination here:

https://brainly.com/question/20211959

#SPJ11








Eliminate the parameter t to find a Cartesian equation in the form = f(y) for: [ r(t) = 21² y(t) = 4+ 5t The resulting equation can be written as =

Answers

The Cartesian equation is x=2(y-4)²/25.

The given functions are g(t)=2t² and y(t)=4+5t.

A curve in 2 dimensions may be given by its parametric equations. These equations describe the x and y coordinates of a point on the curve as functions of a parameter t:

x=g(t) and y=h(t)

If we can eliminate the parameter t from these equations we can describe the curve as a function of the form y=f(x) and x=f(y).

g(t)=2t² and y(t)=4+5t.

Eliminate the parameter t to find a Cartesian equation in the form x = f(y).

Let's first determine the value of t in terms of y(t), then use this value in the function x(t) to eliminate the variable t.

Now, y(t)=4+5t

y-4=5t

5t=(y-4)

t=(y-4)/5

x(t)=2t²

x=2((y-4)/5)²

x=2(y-4)²/25

Therefore, the Cartesian equation is x=2(y-4)²/25.

To learn more about the function visit:

https://brainly.com/question/28303908.

#SPJ1

1. Given that lim f(x) = 4 lim g(x) = -2 lim h(xx) = 0 2 find the limits that exist. If the limit does not exist, explain why. (a) lim [(x) + 5g(x)] (b) lim [9(x)] 2 2 (c) lim f(x) 3f(x) (d) lim *-2 g(x) g(x) (e) lim *=2 h(x) g(x) h(x) (f) lim *-f(x) 2

Answers

The limits that exist are: (a) -6, (b) undetermined, (c) 1/3, (d) 1, (e) 0, and (f) -16. To determine the limits of the given expressions, we can use the properties of limits and the given information.

The limits that exist are: (a) 4, (b) 18, (c) 1/3, (d) 4, (e) 0, and (f) -8. The explanation for each limit is provided in the following paragraphs.

(a) lim [(f(x) + 5g(x)]:

Using the limit properties, we can apply the sum rule. The limit of f(x) as x approaches any value is 4, and the limit of g(x) is -2. Therefore, the limit of the expression is 4 + 5*(-2) = 4 - 10 = -6.

(b) lim [9(x)^2]:

By applying the limit properties and the power rule, we can substitute the limit of (x^2) as x approaches any value, which is the square of the limit of x. As the limit of x is not given, we cannot determine the exact value of this limit.

(c) lim [f(x)/(3f(x))]:

Applying the limit properties and simplifying, we can cancel out the common factor of f(x). The limit of f(x) is 4, so the expression simplifies to 1/3.

(d) lim [(-2g(x))/g(x)]:

Using the limit properties, we can cancel out the common factor of g(x). The limit of g(x) is -2, so the expression simplifies to (-2)/(-2) = 1.

(e) lim [(h(x)*g(x))/h(x)]:

Since the limit of h(x) is 0, any expression multiplied by h(x) will also approach 0. Therefore, the limit of the expression is 0.

(f) lim [(-f(x))^2]:

Applying the limit properties, we can square the limit of (-f(x)), which is (-4)^2 = 16. However, since the limit involves the negative of f(x), the final answer is -16.

Learn more about common factor here:

https://brainly.com/question/30961988

#SPJ11

A 35-year-old person who wants to retire at age 65 starts a yearly retirement contribution in the amount of $5,000. The retirement account is forecasted to average a 6.5% annual rate of return, yielding a total balance of $431,874.32 at retirement age.

If this person had started with the same yearly contribution at age 20, what would be the difference in the account balances?

A spreadsheet was used to calculate the correct answer. Your answer may vary slightly depending on the technology used.

$266,275.76
$215,937.16
$799,748.61
$799,874.61

Answers

$215,937.16 because it just is

Simplify each expression. When simplifying these algebraic expressions,here are some ideas to think about: Did you cancel out common factors? Did vou combine like terms? Did you clear complex fractions Are all your exponents positive? Did you use any trigonometric identities(see Appendix A at the end)? 4x+1-4x.2x+1.2x x+1 sin x 21+x- i+x (c) 1+x x+4-2x(x+4 x+4 2x-+2y-1 (f) x+y sin2x (e) cosx

Answers

a) The value of trignometric expression is 1.

b) The value of trignometric expression is (2x + 1)²

c) The value of trignometric expression is 1.

d) The value of trignometric expression is sin(x).

e) The value of trignometric expression is 21.

f) The value of trignometric expression is (x + y)sin(2x).

g) The value of trignometric expression is cos(x).

a) The expression 4x + 1 - 4x simplifies to 1. The like terms 4x and -4x cancel each other out.

b) The expression (2x + 1)(2x) simplifies to (2x + 1)^2. We multiply the terms using the distributive property, resulting in a quadratic expression.

c) The expression x + 1 over x + 1 simplifies to 1. The common factor x + 1 cancels out.

d) The expression sin(x) remains the same as there are no simplifications possible for trigonometric functions.

e) The expression 21 + x - i + x simplifies to 21. The terms x and x cancel each other out, and the imaginary term i does not affect the real part.

f) The expression (x + 4 - 2x)(x + 4) simplifies to (x + 4)(x + y). We combine like terms and distribute the remaining factors.

g) The expression (2x - 2y - 1)/(x + 4) simplifies to (x + y)sin(2x). We divide each term by the common factor of 2 and distribute the sin(2x) to the remaining terms.

h) The expression cos(x) remains the same as there are no simplifications possible for trigonometric functions.

To know more about distributive property click on below link:

https://brainly.com/question/13818728#

#SPJ11


A
triangular region is created which has vertices (0,0),(0,r),(h,0)
where r>0 and h>0. if the region is rotated about the x-axis,
find the volume of the solid created

Answers

The volume of the solid created by rotating a triangular region about the x-axis with vertices (0,0), (0,r), and (h,0), where r > 0 and h > 0, can be calculated using the method of cylindrical shells. The resulting solid is a frustum of a right circular cone.

To find the volume, we divide the solid into infinitely thin cylindrical shells with height dx and radius y, where y represents the distance from the x-axis to a point on the triangle. The radius y can be expressed as a linear function of x using the equation of the line passing through the points (0,r) and (h,0). The equation of this line is[tex]y = (r/h)x + r[/tex].

The volume of each cylindrical shell is given by[tex]V_shell = 2πxy*dx,[/tex]where x ranges from 0 to h. Substituting the equation for y, we have [tex]V_shell = 2π[(r/h)x + r]x*dx[/tex]. Integrating [tex]V_shell[/tex] with respect to x over the interval [0, h], we get the total volume [tex]V_total = ∫[0,h]2π[(r/h)x + r]x*dx.[/tex]

Simplifying the integral, we have [tex]V_total = 2πr∫[0,h](x^2/h + x)dx + 2πr∫[0,h]x^2dx[/tex]. Evaluating these integrals, we obtain[tex]V_total = (1/3)πr(h^3 + 3h^2r)[/tex]. Therefore, the volume of the solid created by rotating the triangular region about the x-axis is given by [tex](1/3)πr(h^3 + 3h^2r)[/tex], where r > 0 and h > 0.

Learn more about cylindrical shell here:

https://brainly.com/question/32139263

#SPJ11

f(x +h)-f(x) Find lim for the given function and value of x. h-0 h f(x) = -7x-3, x=4 f(x + h) – f(x) The lim h0 for f(x) = -7x - 3, x=4 is (= h

Answers

The value of the limit of the function is -7 based on the given data.

The given function is: f(x) = -7x - 3, x = 4.

A function in mathematics is a relationship between two sets, usually referred to as the domain and the codomain. Each element from the domain set is paired with a distinct member from the codomain set. An input-output mapping is used to represent functions, with the input values serving as the arguments or independent variables and the output values serving as the function values or dependent variables.

Equations, graphs, and tables can all be used to describe functions, and they can also be defined using a variety of mathematical procedures and expressions. The basic importance of functions in mathematical analysis, modelling of real-world occurrences, and equation solving makes them an invaluable resource for comprehending and describing mathematical relationships.

We are required to calculate the following limit: $$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

The expression inside the limit is known as the difference quotient of f(x).

Substituting the values of x and f(x) in the given expression, we get:[tex]$$\begin{aligned}\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} &= \lim_{h \to 0} \frac{(-7(x+h) - 3) - (-7x - 3)}{h} \\&= \lim_{h \to 0} \frac{-7x - 7h - 3 + 7x + 3}{h} \\&= \lim_{h \to 0} \frac{-7h}{h}\end{aligned}$$[/tex]

Simplifying the expression further, we get: [tex]$$\begin{aligned}\lim_{h \to 0} \frac{-7h}{h} &= \lim_{h \to 0} -7 \\&= -7\end{aligned}$$[/tex]

Hence, the value of the limit is -7.

Learn more about function here:

https://brainly.com/question/31062578


#SPJ11

(1 point) A Bernoulli differential equation is one of the form dy + P(x)y = Q(x)y". dx Observe that, if n = 0 or 1, the Bernoulli equation is linear. For other values of n, the substitution u = yl-transforms the Bernoulli equation into the linear equation - du dx + (1 - 1)P(x)u = (1 - .)Q(x). Use an appropriate substitution to solve the equation xy + y = -3xy and find the solution that satisfies y(1) = 7. y(x) =

Answers

Answer:

  The solution to the given Bernoulli differential equation (xy' + y = -3xy^2) with the initial condition (y(1) = 7 ) is:

y (x) = 7 / x ( 1 + 21 log x )

The solution to the Bernoulli equation xy + y = -3xy that satisfies y(1) = 7 is y(x) = 1.

To solve the Bernoulli equation xy + y = -3xy with the initial condition y(1) = 7, we can use the substitution [tex]u = y^{(1-n)[/tex], where n is the exponent in the equation. In this case, n = 1, so we substitute u = y^0 = 1.

Differentiating u with respect to x using the chain rule, we have du/dx = (du/dy)(dy/dx) = 0. Since du/dx is zero, the linear equation -du/dx + (1 - 1)P(x)u = (1 - 1)Q(x) becomes -du/dx = 0, which simplifies to du/dx = 0.

Integrating both sides with respect to x, we get u = C, where C is a constant.

Substituting u back in terms of y, we have [tex]y^{(1-n)} = C[/tex]. Since n = 1, we have [tex]y^{0} = C[/tex], which means C is equal to 1.

Therefore, the solution to the Bernoulli equation is y(x) = 1.

To know more about Bernoullis equation refer here:

https://brainly.com/question/29865910

#SPJ11

The plane P contains the lire L given by x=1-t, y= 1+2t, z=2-3t and the point 9-1,1,2). a. Find the egontion of the plane in standard form axt by + cz = d. b Let Q be the plare 2x+y+z=4. Find the com- ponent of a unit normal vector for a projected on a mit direction vector for lire L.

Answers

a.  The equation of the plane in standard form axt by + cz = d is 0

b.  The component of the unit normal vector for plane Q projected on a unit direction vector for line L is -3/√6.

a) To find the equation of the plane in standard form (ax + by + cz = d), we need to find the normal vector to the plane. Since the plane contains the line L, the direction vector of the line will be parallel to the plane.

The direction vector of line L is given by (-1, 2, -3). To find a normal vector to the plane, we can take the cross product of the direction vector of the line with any vector in the plane. Let's take two points on the plane: P1(1, 1, 2) and P2(0, 3, -1).

Vector between P1 and P2:

P2 - P1 = (0, 3, -1) - (1, 1, 2) = (-1, 2, -3)

Now, we can take the cross product of the direction vector of the line and the vector between P1 and P2:

n = (-1, 2, -3) x (-1, 2, -3)

Using the cross product formula, we get:

n = (2(-3) - 2(-3), -1(-3) - (-1)(-3), -1(2) - 2(-1))

= (-6 + 6, 3 - 3, -2 + 2)

= (0, 0, 0)

The cross product is zero, which means the direction vector of the line and the vector between P1 and P2 are parallel. This implies that the line lies entirely within the plane.

So, the equation of the plane in standard form is:

0x + 0y + 0z = d

0 = d

The equation simplifies to 0 = 0, which is true for all values of x, y, and z. This means that the equation represents the entire 3D space rather than a specific plane.

b. The equation of the plane Q is given as 2x + y + z = 4. To find the component of a unit normal vector for plane Q projected on a unit direction vector for line L, we need to find the dot product between the two vectors.

The direction vector for line L is given by the coefficients of t in the parametric equations, which is (-1, 2, -3).

To find the unit normal vector for plane Q, we can rewrite the equation in the form ax + by + cz = 0, where a, b, and c represent the coefficients of x, y, and z, respectively.

2x + y + z = 4 => 2x + y + z - 4 = 0

The coefficients of x, y, and z in the equation are 2, 1, and 1, respectively. The unit normal vector can be obtained by dividing these coefficients by the magnitude of the vector.

Magnitude of the vector = √(2² + 1² + 1²) = √6

Unit normal vector = (2/√6, 1/√6, 1/√6)

To find the component of this unit normal vector projected on the direction vector of line L, we take their dot product:

Component = (-1)(2/√6) + (2)(1/√6) + (-3)(1/√6)

= -2/√6 + 2/√6 - 3/√6

= -3/√6

Therefore, the component of the unit normal vector for plane Q projected on a unit direction vector for line L is -3/√6.

Learn more about vector at https://brainly.com/question/13427955

#SPJ11

' '
40. [-/1 Points] DETAILS LARCALCET7 5.1.038.MI. Find the particular solution of the differential equation that satisfies the initial condition(s). g(x) 8x², g(-1)=3 g(x) =
Evaluate the limit, using L'Hôpital's rule if necessary.

Answers

The integral of 6 times the absolute value of 3x - 3 with respect to x, evaluated from 1 to 3, can be interpreted as the signed area between the graph of the function y = 6|3x - 3| and the x-axis over the interval [1, 3]. The result of this integral is 24.

To calculate the integral, we divide the interval [1, 3] into two separate intervals based on the change in the expression inside the absolute value.

For x values between 1 and 2, the expression 3x - 3 is negative. Thus, the absolute value |3x - 3| becomes -(3x - 3) or -3x + 3.

Therefore, the integral becomes 6 times the integral of -(3x - 3) with respect to x, evaluated from 1 to 2.

For x values between 2 and 3, the expression 3x - 3 is positive. In this case, the absolute value |3x - 3| remains as (3x - 3).

Thus, the integral becomes 6 times the integral of (3x - 3) with respect to x, evaluated from 2 to 3.

Evaluating the integrals separately and adding their results, we get:

[tex]6 * [(1/2)(-3x^2 + 3x)[/tex]from 1 to [tex]2 + (1/2)(3x^2 - 3x)[/tex]from 2 to 3] = 24.

Therefore, the integral of 6|3x - 3| with respect to x, evaluated from 1 to 3, is equal to 24.

Learn more about integral here:

https://brainly.com/question/31059545

#SPJ11

Consider these two statements:
p: A square is a rectangle.
q: A triangle is a parallelogram.
Select all of the true statements.
■A)~P
口B~g
• c) p ^ g
O D) P V g
O E)P ^ ~9
口F~DVg

Answers

The true statements among the given options are ~P (not P) and ~D (not D).

Statement p: A square is a rectangle. This statement is true because a square is a specific type of rectangle with all sides equal.

Statement q: A triangle is a parallelogram. This statement is false because a triangle and a parallelogram are distinct geometric shapes with different properties.

Statement ~P: Not P. This statement is true because it denies the statement that a square is a rectangle. Since a square is a specific type of rectangle, negating this statement is accurate.

Statement ~q: Not Q. This statement is false because it denies the statement that a triangle is a parallelogram. As explained earlier, a triangle and a parallelogram are different shapes.

Statement p ^ q: P and Q. This statement is false because it asserts both that a square is a rectangle and a triangle is a parallelogram, which is not true.

Statement P V q: P or Q. This statement is true because it asserts that either a square is a rectangle or a triangle is a parallelogram, and the first part is true.

Considering the given options, the true statements are ~P (not P) and ~D (not D), which correspond to options A and E, respectively.

Learn more about geometric shapes here:

https://brainly.com/question/31707452

#SPJ11

Which data set does this stem-and-leaf plot represent? Responses 5, 5, 5, 5, 4, 8, 6, 5, 5, 5, 6, 7, 0, 6 5, 5, 5, 5, 4, 8, 6, 5, 5, 5, 6, 7, 0, 6 15, 24, 28, 36, 45, 75, 76, 77, 80, 86 15, 24, 28, 36, 45, 75, 76, 77, 80, 86 15,555, 248, 36, 45, 75,567, 806 15,555, 248, 36, 45, 75,567, 806 15, 15, 15, 15, 75, 76, 77, 80, 24, 28, 36, 45, 75, 86

Answers

The stem-and-leaf plot represents:

15, 15, 15, 15, 75, 76, 77, 80, 24, 28, 36, 45, 75, 86

What is a stem and leaf plot?

A stem-and-leaf plot serves as a graphical representation technique for data, allowing for the visualization of information while preserving the original data values. It bears resemblance to a histogram, yet it maintains the integrity of individual data points.

To construct a stem-and-leaf plot, the data values are initially divided into equidistant clusters. The initial cluster is referred to as the stem, while the subsequent cluster is known as the leaf.

Learn about stem and leaf plot here https://brainly.com/question/8649311

#SPJ1

Complete question:

Which data set does this stem-and-leaf plot represent?

15, 24, 28, 36, 45, 75, 76, 77, 80, 86

15, 15, 15, 15, 75, 76, 77, 80, 24, 28, 36, 45, 75, 86

5, 5, 5, 5, 4, 8, 6, 5, 5, 5, 6, 7, 0, 6

15,555, 248, 36, 45, 75,567, 806

What is the square root of m6?

m2
m3
m4
m

Answers

Answer:

the sq root of m6 is m3

Step-by-step explanation:

The square root of m6 = √ (m6) = (m6)1/2

= m[6 × (1/2)] → multiplying exponents

= m3

Answer:

m^(3)

Step-by-step explanation:

To find the square root of [tex]m^{6}[/tex], you can use the rule that the square root of [tex]x^{n}[/tex] is equal to [tex]x^{n/2}[/tex].

In this case, x = m and n = 6, so the square root of [tex]m^{6}[/tex] is equal to [tex]m^{6/2}[/tex] = [tex]m^{3}[/tex]. This means that the square root of [tex]m^{x}[/tex] is [tex]m^{3}[/tex].

DS 110: MWF 11-12 Spring 2022 = Homework: 12.2 Question 1, Part 1 of 3 For the function f(x)=2x2 – 3x2 + 3x + 4 find f(x). Then find iO) and (2) t"(x)=

Answers

F(0) = 4.to find f(2), we substitute x = 2 into the function:

f(2) = 2(2)² - 3(2)² + 3(2) + 4     = 2(4) - 3(4) + 6 + 4     = 8 - 12 + 6 + 4     = 6.

to find f(x) for the function f(x) = 2x² - 3x² + 3x + 4, we simply substitute the given function into the variable x:f(x) = 2x² - 3x² + 3x + 4.

next, let's find f(0) and f(2).to find f(0), we substitute x = 0 into the function:

f(0) = 2(0)² - 3(0)² + 3(0) + 4     = 0 - 0 + 0 + 4     = 4. , f(2) = 6.lastly, to find t"(x), we need to calculate the second derivative of f(x).

taking the derivative of f(x) = 2x² - 3x² + 3x + 4, we get:f'(x) = 4x - 6x + 3.

taking the derivative of f'(x), we get:f''(x) = 4 - 6.

Learn more about function here:

https://brainly.com/question/30721594

#SPJ11

every composite number greater than 2 can be written as a product of primes in a unique way except for their order."" is called the

Answers

The statement "every composite number greater than 2 can be written as a product of primes in a unique way except for their order" refers to the fundamental theorem of arithmetic.

The fundamental theorem of arithmetic states that every composite number greater than 2 can be expressed as a unique product of prime numbers, regardless of the order in which the primes are multiplied. This means that any composite number can be broken down into a multiplication of prime factors, and this factorization is unique.

For example, the number 12 can be expressed as 2 × 2 × 3, and this is the only way to write 12 as a product of primes (up to the order of the factors). If we were to change the order of the primes, such as writing it as 3 × 2 × 2, it would still represent the same composite number. This property is fundamental in number theory and has various applications in mathematics and cryptography.

Learn more about product here: https://brainly.com/question/30340079

#SPJ11

3x 1) (7 pts) Discuss how log differentiation makes taking the derivative of y = (sin x)³x possible. You may find it easiest to actually calculate the derivative in your explanation.

Answers

The derivative of y = (sin x)³x is (sin x)³x [3ln(sin x) + 3x * (cos x/sin x) + 1/x].

To find the derivative of y = (sin x)³x, we can use the logarithmic differentiation method.

First, take the natural logarithm of both sides:

ln y = ln[(sin x)³x]

Using the properties of logarithms, we can simplify this to:

ln y = 3x ln(sin x) + ln(x)

Next, we can differentiate both sides with respect to x:

1/y * dy/dx = 3ln(sin x) + 3x * (1/sin x) * cos x + 1/x

Simplifying this expression by multiplying both sides by y, we get:

dy/dx = y [3ln(sin x) + 3x * (cos x/sin x) + 1/x]

Substituting back in for y = (sin x)³x, we get:

dy/dx = (sin x)³x [3ln(sin x) + 3x * (cos x/sin x) + 1/x]

Therefore, the derivative of y = (sin x)³x is (sin x)³x [3ln(sin x) + 3x * (cos x/sin x) + 1/x].

Logarithmic differentiation makes taking the derivative of y = (sin x)³x possible by allowing us to simplify the expression and apply the rules of differentiation more easily.

By taking the natural logarithm of both sides and using properties of logarithms, we were able to rewrite the expression in a way that made it easier to differentiate.

To know more about logarithmic differentiation method refer here:

https://brainly.com/question/21444283#

#SPJ11

The owners of Rollerblades Plus determine that the monthly. S, of its skates vary directly as its advertising budget, A, and inversely as the price of the skates, P. When $ 60,000 is spent on advertising and the price of the skates is $40, the monthly sales are 12,000 pairs of rollerblades
Determine monthly sales if the amount of the advertising budget is increased to $70,000.
(a) Assign a variable to represent each quantities.
(b) Write the equation that represent the variation.
(c) Find the constant of variation.
(d) Answer the problems equation.

Answers

For the given variables: (a) S: Monthly sales, A: advertising budget, P: Skates price. (b) S = k * (A/P) (c) variation constant = 8 (d) 14,000 rollerblades.

(a) Let S be the monthly sales (pair of rollerblades), A be the advertising budget (in dollars), and P be the price of the skates (in dollars) for the variables.

(b) Based on the information given, we can write the equation for variation as:

S = k * (A/P), where k is the constant of variation.

(c) To find the constant of variation, plug the specified values ​​of monthly sales, advertising budget, and price into the equation and solve for k.

Using values ​​of S = 12,000, A = $60,000, and P = $40:

12,000 = k * (60,000/40)

12,000 = 1,500,000

k = 12,000/1,500

k = 8

Therefore, the variation constant is 8.

(d) To answer the problem equation, we need to find the new monthly income when the advertising budget increases to $70,000. Substituting the new value A = $70,000 into the variational equation with the variational constant k = 8 and the original price P = $40 yields:

S = 8 * (70,000/40)

S = 8 * 1,750

S=14,000

So if your advertising budget is increased to $70,000, your new monthly income will be 14,000 pairs of rollerblades. 


Learn more about variables here:

https://brainly.com/question/31194918


#SPJ11

Use implicit differentiation to find dy/dx without first solving for y.
e^(9xy)=y^4

Answers

By using implicit differentiation, we find that dy/dx is equal to -9xy / (9y^2 - 4y^3).

To find dy/dx using implicit differentiation, we'll differentiate both sides of the equation e^(9xy) = y^4 with respect to x.

Differentiating the left side:

d/dx (e^(9xy)) = d/dx (y^4)

Using the chain rule, we get:

d/dx (e^(9xy)) = d/dx (9xy) * d/dx (e^(9xy))

= 9y * d/dx (xy)

= 9y * (y + x * dy/dx)

Differentiating the right side:

d/dx (y^4) = 4y^3 * dy/dx

Now, equating the two derivatives:

9y * (y + x * dy/dx) = 4y^3 * dy/dx

Expanding and rearranging the equation:

9y^2 + 9xy * dy/dx = 4y^3 * dy/dx

Bringing all the dy/dx terms to one side:

9y^2 - 4y^3 * dy/dx = -9xy * dy/dx

Factoring out dy/dx:

(9y^2 - 4y^3) * dy/dx = -9xy

Dividing both sides by (9y^2 - 4y^3):

dy/dx = -9xy / (9y^2 - 4y^3)

So, using implicit differentiation, we find that dy/dx is equal to -9xy / (9y^2 - 4y^3).

To learn more about implicit, refer below:

https://brainly.com/question/29657493

#SPJ11

1. Write an equation that would allow you to test whether a particular point (x, y) is on the parabola

2. Write an equation that states (x, y) is the same distance from (4, 1) as it is from x axis.

3. Write an equation that describe a parabola with focus (-1,-7) and directrix y=3.

4. Write an equation that is perpendicular to the equation y= -2/5x + 8/5.

Answers

The definition of a parabola and the equation of a parabola indicates;

1. (x, y) is on a parabola if it satisfies the equation; 4·y = x² - 6·x + 13

2. The equation is; y² = (x - 4)² + (x - 1)²

3. The equation is; (x + 1)² = -20·(y + 2)

4. y = (5/2)·x + b

What is an equation?

An equation is a statement that two mathematical expressions are equivalent, by joining with an '=' sign.

1. The point (x, y) can be tested if it is on a parabola by plugging the values for the coordinates, (x, y), into the equation of a parabola, which can be presented in the form; y = a·x² + b·x + c

The vertex of the parabola is; (3, 1)

The vertex form is therefore; y = a·(x - 3)² + 1

The point (1, 2) indicates; 2 = a·(1 - 3)² + 1

a·(1 - 3)² = 2 - 1 = 1

a = 1/4

The equation is; y = (1/4)·(x - 3)² + 1 = (x² - 6·x + 13)/4

4·y = x² - 6·x + 13

The point is on the parabola if it satisfies the equation; 4·y = x² - 6·x + 13

2. The distance of the point (x, y) from the point (4, 1), can be presented using the distance formula as follows;

d = √((x - 4)² + (y - 1)²)

The distance of the point (x, y) from the x-axis is; y

The equation that states that (x, y) is the same distance from (4, 1) as it from  the x-axis is therefore;

√((x - 4)² + (y - 1)²) = y

(x - 4)² + (y - 1)² = y²

3. The equation of a parabola with focus (h, k + p) and directrix y = k - p can be presented as follows; (x - h)² = 4·p·(y - k)

Therefore, where the focus is; (-1, -7), and directrix is y = 3, we get;

(h, k + p) = (-1, -7)

3 = k - p

h = -1

k - p + k + p = 2·k

k + p = -7

k - p = 3

k - p + k + p = -7 + 3 = -4 = 2·k

k = -4/2 = -2

p = k - 3

p = -2 - 3 = -5

The equation is therefore;

(x - (-1))² = 4×(-5)×(y - (-2))

(x + 1)² = -20·(y + 2)

4. The slope of a perpendicular line to a line with slope m is; -1/m

The slope of the perpendicular line to the line; y = (-2/5)·x + 8/5, therefore is; m = 5/2

The equation of the line is therefore; y = (5/2)·x + b, where b is a constant, representing the y-coordinate of the y-intercept

Learn more on equations here: https://brainly.com/question/30278629

#SPJ1


Determine if the sequence is convergent cn
=1/2n+n explain ur conclusion
Determine if the sequence is convergent

Answers

To determine if the sequence cₙ = 1/(2ₙ + n) is convergent, we observe that as n increases, the value of each term decreases. As n approaches infinity, the term cₙ approaches zero. Therefore, the sequence is convergent, and its limit is zero.

To determine if the sequence cₙ = 1/(2ₙ + n) is convergent, we need to analyze the behavior of the terms as n approaches infinity.

Let's examine the behavior of the sequence:

c₁ = 1/(2 + 1) = 1/3

c₂ = 1/(2(2) + 2) = 1/6

c₃ = 1/(2(3) + 3) = 1/9

...

As n increases, the denominator (2ₙ + n) grows larger. Since the denominator is increasing, the value of each term cₙ decreases.

Now, let's consider what happens as n approaches infinity. In the expression 1/(2ₙ + n), as n gets larger and larger, the effect of n on the denominator diminishes. The dominant term becomes 2ₙ, and the expression approaches 1/(2ₙ).

We can see that the term cₙ is inversely proportional to 2ₙ. As n approaches infinity, 2ₙ also increases indefinitely. Consequently, cₙ approaches zero because 1 divided by a very large number is effectively zero.

Therefore, the sequence cₙ = 1/(2ₙ + n) is convergent, and its limit is zero.

Learn more about Convergence at

brainly.com/question/29258536

#SPJ4








I 22. Solve the following system of linear equations and interpret your solution geometrically. (8 marks) 4x -y + 2z=8 (1) x + y - 2z = 7 (2) 6x - 4y = 10 (3)

Answers

Therefore, the solution to the system of linear equations is x = 80/44, y = 171/44, and z = 43/22.

What is Linear Equation?

A linear equation is an algebraic equation of the form y=mx+b. involving only a constant and a first-order (linear) term, where m is the slope and b is the y-intercept. The above is occasionally called a "linear equation of two variables" where y and x are the variables

To solve the given system of linear equations:

(1) 4x - y + 2z = 8

(2) x + y - 2z = 7

(3) 6x - 4y = 10

We can use various methods to solve this system, such as substitution, elimination, or matrix methods. Let's solve it using the elimination method.

First, let's rewrite the system in matrix form:

[ 4 -1 2 ] [ x ] [ 8 ]

[ 1 1 -2 ] [ y ] = [ 7 ]

[ 6 -4 0 ] [ z ] [ 10 ]

Next, we can perform row operations to eliminate variables and simplify the system. The goal is to transform the matrix into row-echelon form or reduced row-echelon form.

R2 = R2 - R1

R3 = R3 - 6R1

The updated matrix becomes:

[ 4 -1 2 ] [ x ] [ 8 ]

[ 0 2 -4 ] [ y ] = [ -1 ]

[ 0 -10 -12 ] [ z ] [ -38 ]

Next, we perform further row operations:

R3 = R3 + 5R2/2

The updated matrix becomes:

[ 4 -1 2 ] [ x ] [ 8 ]

[ 0 2 -4 ] [ y ] = [ -1 ]

[ 0 0 -22 ] [ z ] [ -43 ]

Now, we have an upper triangular matrix. Let's back-substitute to find the values of the variables:

From the third equation, we have -22z = -43, which gives z = 43/22.

Substituting this value of z into the second equation, we have 2y - 4(43/22) = -1. Simplifying, we get 2y = -1 + 172/22, which gives y = 171/44.

Finally, substituting the values of y and z into the first equation, we have 4x - (-171/44) + 2(43/22) = 8. Simplifying, we get 4x + 171/44 + 86/22 = 8, which gives 4x = 352/44 - 171/44 - 86/22. Simplifying further, we have 4x = 320/44, and x = 80/44.

Therefore, the solution to the system of linear equations is x = 80/44, y = 171/44, and z = 43/22.

Geometric interpretation:

The system of linear equations represents a system of planes in three-dimensional space. Each equation corresponds to a plane. The solution to the system represents the point of intersection of these planes, assuming they are not parallel or coincident.

In this case, the solution (x, y, z) = (80/44, 171/44, 43/22) represents the point where these three planes intersect. Geometrically, it represents a unique point in three-dimensional space where the three planes coincide.

To learn more about Linear Equation from the given below

https://brainly.com/question/28307569

#SPJ4

an interaction term is used to model how the synergies between multiple variables impact the response variable

Answers

An interaction term is used to model how the synergies between multiple variables impact the response variable.

In statistical analysis, an interaction term is created by multiplying two or more predictor variables together. The purpose of including an interaction term in a statistical model is to capture the combined effect of the interacting variables on the response variable. It allows us to investigate whether the relationship between the predictors and the response is influenced by the interaction between them.

When an interaction term is included in a regression model, it helps us understand how the relationship between the predictors and the response varies across different levels of the interacting variables. It enables us to examine whether the effect of one predictor on the response depends on the level of another predictor.

By including an interaction term in the model, we can account for the synergistic effects and better understand how the predictors jointly influence the response variable. This allows for a more accurate and comprehensive analysis of the relationships between variables.

Learn more about predictor variables

https://brainly.com/question/30638379

#SPJ11




2) Evaluate ſ xarcsin x dx by using suitable technique of integration.

Answers

The integral ∫ xarcsin(x) dx evaluates to x * arcsin(x) - 2/3 * (1 - x²)^(3/2) + C, where C is the constant of integration.

Determine how to find integration?

The integral ∫ xarcsin(x) dx can be evaluated using integration by parts.

∫ xarcsin(x) dx = x * arcsin(x) - ∫ (√(1 - x²)) dx

Let's evaluate the remaining integral:

∫ (√(1 - x²)) dx

To evaluate this integral, we can use the substitution method. Let u = 1 - x², then du = -2x dx.

Substituting the values, we get:

∫ (√(1 - x²)) dx = -∫ (√u) du/2

Integrating, we have:

-∫ (√u) du/2 = -∫ (u^(1/2)) du/2 = -2/3 * u^(3/2) + C

Substituting back u = 1 - x², we get:

-2/3 * (1 - x²)^(3/2) + C

Therefore, the final result is:

∫ xarcsin(x) dx = x * arcsin(x) - 2/3 * (1 - x²)^(3/2) + C

where C is the constant of integration.

To know more about substitution method, refer here:

https://brainly.com/question/22340165#

#SPJ4

Twice the number X subtracted by 3 is ...........​

Answers

Twice the number X subtracted by 3, when X = 5, is equal to 7.

To calculate twice the number X subtracted by 3, we can use the following equation:

2X - 3

Let's say we have a specific value for X, such as X = 5. We can substitute this value into the equation:

2(5) - 3

Now, we can perform the multiplication first:

10 - 3

Finally, we subtract 3 from 10:

10 - 3 = 7

Therefore, twice the number X subtracted by 3, when X = 5, is equal to 7.

Learn more about BODMASS click;

https://brainly.com/question/24608183

#SPJ1

Find dy dz given the following. 4 + 5x = sin(xy") dy dc II

Answers

Hence, the solution of the given problem is dy/dz = -sin(xy) * cos(xy) / (4 + 5x)^2.

The given equation is 4 + 5x = sin(xy") dy dc II. We need to find dy dz.In order to find dy/dz, we will differentiate both sides of the given equation with respect to z.$$4+5x=sin(xy) \frac{dy}{dz}$$Differentiate both sides of the above equation with respect to z.$$0=\frac{d}{dz}(sin(xy))\frac{dy}{dz}+sin(xy)\frac{d^2y}{dz^2}$$$$\frac{d^2y}{dz^2}=-sin(xy)\frac{d}{dz}(sin(xy))\frac{1}{(\frac{dy}{dz})^2}$$Therefore, dy/dz = -sin(xy) * cos(xy) / (4 + 5x)^2.Hence, the solution of the given problem is dy/dz = -sin(xy) * cos(xy) / (4 + 5x)^2.

learn more about problem here;

https://brainly.com/question/32564923?

#SPJ11

Question 3. Find 5. (– 22)dx + 2xydy 2 - 2x Where A. C is the upper half-circle x2 + y2 = 1 oriented in the CCW direction using direct computation. (Parametrize the curve and substitute) B. C is the

Answers

A. The value of the integral [tex]\( \int_{C} (y^2-2x)dx+2xydy \)[/tex] over the upper half-circle [tex]\( x^2 + y^2 = 1 \)[/tex] oriented in the counterclockwise (CCW) direction is 0.

B. The value of the integral [tex]\( \int_{C} (y^2-2x)dx+2xydy \)[/tex] over the straight line from (1,0) to (-1,0) using direct computation is -4.

C. The value of the integral [tex]\( \int_{C} (y^2-2x)dx+2xydy \)[/tex] over any path from (1,0) to (-1,0) using the Fundamental Theorem of Line Integrals is 0.

A. To evaluate the integral, we first need to parametrize the curve. For the upper half-circle, we can use the parameterization[tex]\( x = \cos(t) \)[/tex] and [tex]\( y = \sin(t) \)[/tex] , where [tex]\( t \)[/tex] ranges from [tex]\( 0 \)[/tex] to [tex]\( \pi \)[/tex].

Substituting these values into the integral, we get:

[tex]\( \int_{C} (y^2-2x)dx+2xydy = \int_{0}^{\pi} (\sin^2(t) - 2\cos(t))(-\sin(t)dt) + 2(\cos(t)\sin(t))( \cos(t)dt) \)[/tex]

Simplifying and integrating, we find that each term in the integral evaluates to 0. Therefore, the value of the integral over the upper half-circle in the CCW direction is 0.

B. The parametric equation for the straight line from (1,0) to (-1,0) can be written as [tex]\( x = t \)[/tex] and [tex]\( y = 0 \)[/tex], where [tex]\( t \)[/tex] ranges from 1 to -1.

Substituting these values into the integral, we get:

[tex]\( \int_{C} (y^2-2x)dx+2xydy = \int_{1}^{-1} (0-2t)(dt) + 2(t)(0) \)[/tex]

Simplifying and integrating, we find:

[tex]\( \int_{C} (y^2-2x)dx+2xydy = \int_{1}^{-1} (-2t)(dt) = [-t^2]_{1}^{-1} = -((-1)^2 - (1)^2) = -4 \)[/tex]

Therefore, the value of the integral over the straight line from (1,0) to (-1,0) is -4.

C. Since the integrand [tex]\( (y^2-2x)dx+2xydy \)[/tex] is the exact differential of the function [tex]\( x^2y + y^3 \)[/tex], the value of the line integral depends only on the endpoints of the path. In this case, the endpoints are (1,0) and (-1,0), and the function [tex]\( x^2y + y^3 \)[/tex] evaluated at these endpoints is 0. Therefore, the value of the integral is 0, regardless of the specific path chosen.

The complete question must be:

Find

[tex]\int_{c}{\left(y^2-2x\right)dx+2xydy}[/tex]

where

A. C is the upper half-circle x^2+y^2=1 oriented inthe CCW direction using direct computation.

(Parametrize the curve and substitute)

B. C is the straight line from (1,0) to (-1,0) using direct computation.

C. C is any path from (1,0) to (-1,0) using the Fundamental Theorem of Line Integrals.

Learn more about integral :

https://brainly.com/question/31433890

#SPJ11

The function f(x) = 2x3 + 3r2 – 12 on the interval (-3,3] has two critical points, one at x = -1 and the other at x = 0. 12. (a)(3 points) Use the first derivative test to determine if f has a local

Answers

The function f(x) = 2x3 + 3r2 – 12 on the interval (-3,3] has two critical points, one at x = -1 and the other at x = 0. 12 and f(x) has neither a local maximum nor a local minimum at x = 0.

maximum or minimum at x = -1 and x = 0.

To use the first derivative test, we need to find the sign of the derivative to the left and right of each critical point.

For x = -1, we have:

$f'(x) = 6x^2 + 6x$

$f'(-2) = 6(-2)^2 + 6(-2) = 12 > 0$ (increasing to the left of -1)

$f'(-1/2) = 6(-1/2)^2 + 6(-1/2) = -3 < 0$ (decreasing to the right of -1)

Therefore, f(x) has a local maximum at x = -1.

For x = 0, we have:

$f'(x) = 6x^2$

$f'(-1/2) = 6(-1/2)^2 = 1.5 > 0$ (increasing to the right of 0)

$f'(1) = 6(1)^2 = 6 > 0$ (increasing to the right of 0)

Therefore, f(x) has neither a local maximum nor a local minimum at x = 0.

To know more about first derivative test refer here:

https://brainly.com/question/29020178?#

#SPJ11

Other Questions
(This is one question, please answer all the subpoints!!!! I will give a thumbs up I promise. Have a greatday.)f(x) = 2x in(x), x > 0. fa = x . (A) List all critical numbers of f. If there are no critical numbers, enter 'NONE'. Critical numbers = (B) Use interval notation to indicate where f(x) is decreasi use this error bound to find the largest value of a such that the quadratic approximation error bound guarantees that |f(x)t2(x)| 0.01 for all x in j. (round your answer to 6 decimal places.) a= a second-grade teacher has been working to foster an increased value for reading in hopes of helping to create lifelong readers. one of the activities that she is planning will have students recommend books to each other by taking turns to share out the title, author, and a brief description of a book that they enjoy. how should she differentiate this activity to support the participation of an ell student who is currently at the intermediate speaking level? The cost of the goods that a company sold during a period is shown in its financial statements as ___________ and the cost of the goods that a company still has on hand at the end of the year is shown in the financial statements as ____________. A. Cost of goods sold; inventory B. Goods on hand; inventory expense C. Inventory; cost of goods sold D. Sales revenue; cost of goods sold 16. What will happen If a fast-moving car making a loud noise drives awayfrom a person?O A. The frequency of the sound waves reaching the person's ear will be greaterthan the frequency of the waves leaving the car.OB. The pitch of the sound being heard by the person will appear to be lowerthan the pitch of the source.OC. The pitch of the sound being heard by the person will appear to be higherthan the pitch of the source.O D. The pitch and frequency of the sound waves reaching the person's ear willremain unchanged. I'm making a AD for my special ed class room and I am interviewing people. Make 10 unique questions I can ask my fellow classmates about the things they have learned in this room. True/false: organizations can use saas to acquire cloud-based erp systems how has computer security evolved into modern information security Which phylum did you find the most animals (i.e., greatest number of different species)for? Which phylum was the most difficult to find? Were there some phylum that youcould not find at all? How diverse do you think animals are in your region? Did youconsistently find certain animals in a specific type of microhabitat? nibrs represents a significant redesign of the original ucr program Please help. I will give brainliest (1 point) Find the equation of the tangent plane to z = el + x + x3 + 3 x5 x X at the point (4,0, 1032). 7 = What will cause the demand for a normal product to increase? O a. The expectation by consumers that future prices will be higher. O b. A decrease in the price of a substitute product. O c. A decrease in income levels. O d. An increase in the price of a complementary product. Oe. A decrease in the size of the population. A patient is undergoing valve replacement due to endocarditis. What should the nurse teach the patient to prepare for postoperative recovery? 03 Investigate the convergence or divergence of the series 5(1). Find the Taylor Series about t = 3 for the following series f(x) = -10 + 6 What is data mining. What are its 4 scope. Take any 1 of the scope and discuss in details its techniques and process. True/false: the law expects and allows businesses to compete aggressively What type of character has very few or no unique traits? A. flat B. round C. static D. dynamic E. major please use calculus 2 techniques and write legibly thank youExplain and find the surface area of the solid generated by revolving about the y-axis, y=1-x^2, on the interval 0 < x A car is moving North at 65 miles per hour. A person is walking due East on a different road. Determine how fast the person is moving at the moment when the person is 50 miles West and 70 miles South of the car and the distance between the person and the car is increasing at a rate of 55 miles per hour.