Question 16 4 pts The resistance R of a certain type of resistor is R= 70.00314-5T+100 where R is measured in ohms and the temperature T is measured in dR degrees Celsius. Use a computer algebra syste

Answers

Answer 1

Remember to substitute the actual values of T and interpret the results appropriately based on the context of the problem.

To analyze the given function and perform calculations, we'll use the computer algebra system. However, please note that as a text-based AI model, I can't directly interact with a computer algebra system. Nonetheless, I can guide you through the steps to solve the problem using a computer algebra system like Mathematica, Maple, or SymPy.

The function provided is:

R = 70.00314 - 5T + 100

To analyze this function using a computer algebra system, you can follow these steps:

1. Enter the function into the computer algebra system. For example, in Mathematica, you can enter:

  R[T_] := 70.00314 - 5T + 100

2. Differentiate the function to find the derivative with respect to temperature T. In Mathematica, you can use the command:

  R'[T]

  The result will be the derivative of R with respect to T.

3. To determine when the resistor is slowing down, you need to find the critical points of the derivative function. In Mathematica, you can use the command:

  Solve[R'[T] == 0, T]

  This will provide the values of T where the derivative is equal to zero.

4. To find the position function s(t), we need more information about the object's motion or a relationship between T and t. Please provide additional details or equations relating temperature T to time t.

5. If you have any further questions or need assistance with specific calculations using a computer algebra system, feel free to ask.

Remember to substitute the actual values of T and interpret the results appropriately based on the context of the problem.

To know more about Coordinate related question visit:

https://brainly.com/question/22261383

#SPJ11


Related Questions

The velocity function (in meters per second) for a certain particle, moving in a straight line, is v(t)=t^2-2t-8 for 1≤t≤6
 
A) Find the displacement of the particle over this period
 
B) Find the total distance by the particle over the time period

Answers

the total distance traveled by the particle over the time period is 14/3 meters.

To find the displacement of the particle over the time period, we need to integrate the velocity function v(t) over the given interval.

A) Displacement:

The displacement is given by the definite integral of the velocity function v(t) over the interval [1, 6]:

Displacement = ∫[1, 6] (t^2 - 2t - 8) dt

To evaluate this integral, we can use the power rule of integration:

Displacement = [(1/3) * t^3 - t^2 - 8t] evaluated from 1 to 6

= [(1/3) * (6^3) - 6^2 - 8 * 6] - [(1/3) * (1^3) - 1^2 - 8 * 1]

= [72 - 36 - 48] - [1/3 - 1 - 8]

= -12 - (-22/3)

= -12 + 22/3

= (-36 + 22)/3

= -14/3

Therefore, the displacement of the particle over the time period is -14/3 meters.

B) Total Distance:

To find the total distance traveled by the particle over the time period, we need to consider the absolute value of the velocity function and integrate it over the interval [1, 6]:

Total Distance = ∫[1, 6] |t^2 - 2t - 8| dt

Since the velocity function is already non-negative for the given interval, we can calculate the total distance by evaluating the integral of v(t) directly:

Total Distance = ∫[1, 6] (t^2 - 2t - 8) dt

Using the same integral from part A, we can evaluate it as:

Total Distance = (-14/3) meters

to know more about integral visit:

brainly.com/question/31059545

#SPJ11

: D. 1. The total cost of producing a food processors is C'(x) = 2,000 + 50x -0.5x² a Find the actual additional cost of producing the 21st food processor. b Use the marginal cost to approximate the cost of producing the 21st food processor.

Answers

a)The actual additional cost of producing the 21st food processor is $29.50.

b) Using the marginal cost approximation, the cost of producing the 21st food processor is $2,830.

a) To find the actual additional cost of producing the 21st food processor, we need to calculate the difference between the total cost of producing 21 processors and the total cost of producing 20 processors.

The total cost of producing x food processors is given by C(x) = 2,000 + 50x - 0.5x^2.

To find the cost of producing the 20th processor, we substitute x = 20 into the cost equation:

C(20) = 2,000 + 50(20) - 0.5(20)^2

= 2,000 + 1,000 - 0.5(400)

= 2,000 + 1,000 - 200

= 3,000 - 200

= 2,800

Now, we calculate the cost of producing the 21st processor:

C(21) = 2,000 + 50(21) - 0.5(21)^2

= 2,000 + 1,050 - 0.5(441)

= 2,000 + 1,050 - 220.5

= 3,050 - 220.5

= 2,829.5

The actual additional cost of producing the 21st food processor is the difference between C(21) and C(20):

Additional cost = C(21) - C(20)

= 2,829.5 - 2,800

= 29.5

Therefore, the actual additional cost of producing the 21st food processor is $29.50.

b) To approximate the cost of producing the 21st food processor using marginal cost, we need to find the derivative of the cost function with respect to x.

C'(x) = 50 - x

The marginal cost represents the rate of change of the total cost with respect to the number of units produced. So, to approximate the cost of producing the 21st processor, we evaluate the derivative at x = 20 (since the 20th processor has already been produced).

Marginal cost at x = 20:

C'(20) = 50 - 20

= 30

The marginal cost is $30 per unit. Since we are interested in the cost of producing the 21st food processor, we can approximate it by adding the marginal cost to the cost of producing the 20th processor.

Approximated cost of producing the 21st food processor = Cost of producing the 20th processor + Marginal cost

= C(20) + C'(20)

= 2,800 + 30

= 2,830

Therefore, using the marginal cost approximation, the cost of producing the 21st food processor is $2,830.

To know more about total cost and marginal cost refer to this link-

https://brainly.com/question/28932883#

#SPJ11

Find the producer surplus for the supply curve at the given sales level, X. p=x? + 2; x=1 OA. - $2 B. - $0.67 OC. $0.67 OD. $2

Answers

The producer surplus can be determined by calculating the area under the supply curve up to x = 1. The correct answer is B. -$0.67.

The supply curve equation is given as p = x^2 + 2, where p represents the price and x represents the quantity supplied. In this case, we are given that x = 1. Substituting this value into the supply curve equation, we have p = 1^2 + 2 = 3.

To calculate the producer surplus, we need to find the area under the supply curve up to x = 1. This can be visualized as the triangle formed by the price line p = 3, the quantity axis (x-axis), and the vertical line x = 1.

The base of the triangle is the quantity, which is 1. The height of the triangle is the price, which is 3. Therefore, the area of the triangle is (1/2) * base * height = (1/2) * 1 * 3 = 1.5.

However, the producer surplus represents the area above the supply curve and below the market price line. Since the market price is p = 3, and the area under the supply curve is 1.5, the producer surplus is given by the difference between the market price and the area under the supply curve: 3 - 1.5 = 1.5.

Learn more about supply curve here:

https://brainly.com/question/30625428

#SPJ11

Find the value of y such that the points are collinear. (-6, -5), (12, y), (3, 5) y =

Answers

To determine the value of y such that the points (-6, -5), (12, y), and (3, 5) are collinear, we can use the slope formula.

The slope between two points (x1, y1) and (x2, y2) is given by (y2 - y1) / (x2 - x1).

Using the first two points (-6, -5) and (12, y), we can calculate the slope:

slope = (y - (-5)) / (12 - (-6)) = (y + 5) / 18

Now, we compare this slope to the slope between the second and third points (12, y) and (3, 5):

slope = (5 - y) / (3 - 12) = (5 - y) / (-9) = (y - 5) / 9

For the points to be collinear, the slopes between any two pairs of points should be equal.

Setting the two slopes equal to each other, we have:

(y + 5) / 18 = (y - 5) / 9

Simplifying and solving for y:

2(y + 5) = y - 5

2y + 10 = y - 5

y = -15

Therefore, the value of y that makes the points (-6, -5), (12, y), and (3, 5) collinear is -15.

To learn more about collinear points click here:  brainly.com/question/5191807

#SPJ11

For the curve given by r(t) = (2t, et, e9t), Find the derivative r' (t) = ( 9. Find the second derivative r(t) = ( Find the curvature at t = 0 K(0) = 1. 1. 1.

Answers

The derivative of the curve r(t) = (2t, et, e9t) is r'(t) = (2, et, 9e9t). The second derivative of the curve is r''(t) = (0, et, 81e9t).

To find the curvature at t = 0, we can plug in the value of t into the formula for curvature, which is given by K(t) = ||r'(t) × r''(t)|| [tex]||r'(t)||^3[/tex].

To find the derivative of the curve r(t) = (2t, et, e9t), we take the derivative of each component of the curve with respect to t. The derivative of r(t) with respect to t is r'(t) = (2, et, 9e9t).

Next, we find the second derivative of the curve by taking the derivative of each component of r'(t). The second derivative of r(t) is r''(t) = (0, et, 81e9t).

To find the curvature at t = 0, we need to calculate the cross product of r'(t) and r''(t), and then calculate the magnitudes of these vectors. The formula for curvature is K(t) = ||r'(t) × r''(t)||  [tex]||r'(t)||^3[/tex].

By plugging in t = 0, we get K(0) = ||(2, 1, 0) × (0, 1, 81)|| / |[tex]|(2, 1, 0)||^3[/tex]. Simplifying further, we find that K(0) = 1.

In conclusion, the derivative of r(t) is r'(t) = (2, et, 9e9t), the second derivative is r''(t) = (0, et, 81e9t), and the curvature at t = 0 is K(0) = 1.

Learn more about derivative here:

https://brainly.com/question/29144258

#SPJ11

The amount of air (in Titersin an average resting persones a seconds after exhaling can be modeled by the function A = 0.37 cos (+) +0.45."

Answers

The function A = 0.37 cos(t) + 0.45 models the amount of air (in liters) in an average resting person's lungs t seconds after exhaling.

The given function A = 0.37 cos(t) + 0.45 represents a mathematical model for the amount of air in liters in an average resting person's lungs t seconds after exhaling In the equation, cos(t) represents the cosine function, which oscillates between -1 and 1 as the input t varies. The coefficient 0.37 scales the amplitude of the cosine function, determining the range of values for the amount of air. The constant term 0.45 represents the average baseline level of air in the lungs.

The function A takes the input of time t in seconds and calculates the corresponding amount of air in liters. As t increases, the cosine function oscillates, causing the amount of air in the lungs to fluctuate around the baseline level of 0.45 liters. The amplitude of the oscillations is determined by the coefficient 0.37.

Learn more about function here:

https://brainly.com/question/30721594

#SPJ11

Designing a Silo
As an employee of the architectural firm of Brown and Farmer, you have been asked to design a silo to stand adjacent to an existing barn on the campus of the local community college. You are charged with finding the dimensions of the least expensive silo that meets the following specifications.

The silo will be made in the form of a right circular cylinder surmounted by a hemi-spherical dome.
It will stand on a circular concrete base that has a radius 1 foot larger than that of the cylinder.
The dome is to be made of galvanized sheet metal, the cylinder of pest-resistant lumber.
The cylindrical portion of the silo must hold 1000π cubic feet of grain.
Estimates for material and construction costs are as indicated in the diagram below.

The design of a silo with the estimates for the material and the construction costs.

The ultimate proportions of the silo will be determined by your computations. In order to provide the needed capacity, a relatively short silo would need to be fairly wide. A taller silo, on the other hand, could be rather narrow and still hold the necessary amount of grain. Thus there is an inverse relationship between r, the radius, and h, the height of the cylinder.


Rewrite your estimated cost for the cylinder in terms of the single variable, r, alone. Cost of cylinder = ___________________

Answers

The cost of the cylinder in terms of the single variable, r, alone is 2000π + πr⁴

How to calculate the cost

The volume of a cylinder is given by πr²h. We know that the volume of the cylinder must be 1000π cubic feet, so we can set up the following equation:

πr²h = 1000π

h = 1000/r²

The cost of the cylinder is given by 2πr²h + πr² = 2πr²(1000/r²) + πr² = 2000π + πr⁴

The cost of the cylinder in terms of the single variable, r, alone is:

Cost of cylinder = 2000π + πr⁴

Learn more about cylinder on

https://brainly.com/question/9554871

#SPJ1

subject: trig and exponentials
Determine the derivative for each of the following. A) y = 93x B) y = In(3x² + 2x + 1) C) y = x²e4x D) y = esin (3x) E) y = (8 + 3x)

Answers

The derivatives of the functions are:

A) y = 93x is dy/dx = 93.

B) y = ln(3x² + 2x + 1) is dy/dx = (6x + 2)/(3x² + 2x + 1).

C)  y = x²e⁽⁴ˣ⁾ is dy/dx = 2xe⁽⁴ˣ⁾ + 4x²e⁽⁴ˣ⁾

D) y = e(sin(3x)) is dy/dx = 3e(sin(3x))cos(3x).

E) y = 8 + 3x is dy/dx = 3.

How to determine the derivatives?

A) For the function y = 93x, we use the power rule to find the derivative:

The power rule states that if we have a function of the form y = cxⁿ, where c and n are constants, the derivative is given by dy/dx = cnx⁽ⁿ⁻¹⁾.

So, c = 93 and n = 1.

Applying the power rule:

dy/dx = 1 * 93 * x⁽¹⁻¹⁾ = 93 * x⁰ = 93.

Therefore, the derivative of y = 93x is dy/dx = 93.

B) Function y = ln(3x² + 2x + 1):

Here, use the chain rule. The chain rule states that for a composition of functions, y = f(g(x)), the derivative is dy/dx = f'(g(x)) * g'(x).

f(u) = ln(u) and g(x) = 3x² + 2x + 1.

The derivative of f(u) = ln(u) with respect to u is 1/u.

To find g'(x), we differentiate each term separately:

g'(x) = d/dx (3x²) + d/dx (2x) + d/dx (1) = 6x + 2 + 0 = 6x + 2.

Next, we apply the chain rule:

dy/dx = f'(g(x)) * g'(x) = (1/(3x² + 2x + 1)) * (6x + 2).

Therefore, the derivative of y = ln(3x² + 2x + 1) is dy/dx = (6x + 2)/(3x² + 2x + 1).

C) function y = x²e⁽⁴ˣ⁾:

We use the product rule to find its derivative.

The product rule says for a function of the form y = f(x)g(x), the derivative is given by dy/dx = f'(x)g(x) + f(x)g'(x).

Here, f(x) = x² and g(x) = e⁽⁴ˣ⁾. The derivative of f(x) = x² with respect to x is 2x.

To find g'(x), we differentiate e⁽⁴ˣ⁾ using the chain rule.

The derivative of [tex]e^{u}[/tex] with respect to u is [tex]e^{u}[/tex].

g'(x) = d/dx (e⁽⁴ˣ⁾) = e⁽⁴ˣ⁾) * d/dx (4x) = 4e⁽⁴ˣ⁾.

Apply the product rule:

dy/dx = f'(x)g(x) + f(x)g'(x) = 2x * e⁽⁴ˣ⁾ + x² * 4e⁽⁴ˣ⁾.

Thus, the derivative of y = x²e⁽⁴ˣ⁾ is dy/dx = 2xe⁽⁴ˣ⁾ + 4x²e⁽⁴ˣ⁾.

D) Function y = e(sin(3x)):

We use the chain rule here: It states that for a function y = f(g(x)), the derivative is dy/dx = f'(g(x)) * g'(x).

So, f(u) = [tex]e^{u}[/tex] and g(x) = sin(3x).

The derivative of f(u) = [tex]e^{u}[/tex] with respect to u is [tex]e^{u}[/tex].

To find g'(x), we differentiate sin(3x:.

The derivative of sin(u) with respect to u is cos(u), and the derivative of 3x with respect to x is 3.

g'(x) = d/dx (sin(3x)) = cos(3x) * d/dx (3x) = 3cos(3x).

Let's, apply the chain rule:

dy/dx = f'(g(x)) * g'(x) = e(sin(3x)) * 3cos(3x).

So, the derivative of y = e(sin(3x)) is dy/dx = 3e(sin(3x))cos(3x).

E) y = 8 + 3x:

We use the power rule to find the derivative:

y = cxⁿ, where c and n are constants, and the derivative is dy/dx = cnx⁽ⁿ⁻¹⁾.

In this case, c = 3 and n = 1.

Apply the power rule:

dy/dx = 1 * 3 * x⁽¹⁻¹⁾ = 3 * x⁰ = 3.

Therefore, the derivative of y = 8 + 3x is dy/dx = 3.

Learn more about derivatives at brainly.com/question/28376218

#SPJ1

S is a set of vectors in R3 that are linearly independent, but do not span R3. What is the maximum number of vectors in S? (A) one (B) two (C) three (D) S may contain any number of vectors

Answers

The maximum number of vectors in set S can be determined by the dimension of the vector space R3, which is three.

If S is a set of vectors in R3 that are linearly independent, but do not span R3, it implies that S is a proper subset of R3. Since the dimension of R3 is three, S cannot contain more than three vectors.

To understand this, we need to consider the definition of spanning. A set of vectors spans a vector space if every vector in that space can be written as a linear combination of the vectors in the set. Since S does not span R3, there must be at least one vector in R3 that cannot be expressed as a linear combination of the vectors in S.

If we add another vector to S, it would increase the span of S and potentially allow it to span R3. Therefore, the maximum number of vectors in S is three, as adding a fourth vector would exceed the dimension of R3 and allow S to span R3.

To understand why, let's break down the options and their implications:

(A) If S contains only one vector, it cannot span R3 since a single vector can only represent a line in R3, not the entire three-dimensional space.

(B) If S contains two vectors, it still cannot span R3. Two vectors can at most span a plane within R3, but they will not cover the entire space.

(C) If S contains three vectors, it is possible for them to be linearly independent and span R3. Three linearly independent vectors can form a basis for R3, meaning any vector in R3 can be expressed as a linear combination of these three vectors.

(D) This option is incorrect because S cannot contain any number of vectors. It must be limited to a maximum of three vectors in order to meet the given conditions.

Thus, the correct answer is (C) three.

To learn more about linear combination visit:

brainly.com/question/30355055

#SPJ11

Given the Lorenz curve L(x) = x¹2, find the corresponding Gini index. What percent of the population get 35% of the total income?

Answers

The Gini index corresponding to the Lorenz curve L(x) = x¹² is 0.6. 35% of the total income is received by approximately 18.42% of the population.

What is the Gini index for the Lorenz curve L(x) = x¹², and what percentage of the population receives 35% of the total income?

The Lorenz curve represents the cumulative distribution of income across a population, while the Gini index measures income inequality. To calculate the Gini index, we need to find the area between the Lorenz curve and the line of perfect equality, which is represented by the diagonal line connecting the origin to the point (1, 1).

In the given Lorenz curve L(x) = x¹², we can integrate the curve from 0 to 1 to find the area between the curve and the line of perfect equality. By performing the integration, we get the Gini index value of 0.6. This indicates a moderate level of income inequality.

To determine the percentage of the population that receives 35% of the total income, we analyze the Lorenz curve. The x-axis represents the cumulative population percentage, while the y-axis represents the cumulative income percentage.

We locate the point on the Lorenz curve corresponding to 35% of the total income on the y-axis. From this point, we move horizontally to the Lorenz curve and then vertically downwards to the x-axis.

The corresponding population percentage is approximately 18.42%.

Learn more about income inequality and the Gini index.

brainly.com/question/14364119

#SPJ11

find the solution to the linear system of differential equations {x′y′==19x 20y−15x−16y satisfying the initial conditions x(0)=9 and y(0)=−6.

Answers

The solution to the given linear system of differential equations, {x'y' = 19x - 20y, -15x - 16y}, with initial conditions x(0) = 9 and y(0) = -6, is x(t) = [tex]3e^t - 6e^{(-4t)}[/tex] and y(t) = [tex]-6e^{(-4t)} - 3e^t[/tex].

To solve the given linear system of differential equations, we can use the method of solving a system of linear first-order differential equations.

We start by rewriting the equations in matrix form:

Let X = [x, y] be the vector of unknown functions, and A = [tex]\left[\begin{array}{ccc}19&-20\\-15&-16\\\end{array}\right][/tex] be the coefficient matrix.

Then the given system can be written as X' = AX.

To find the solution, we need to find the eigenvalues and eigenvectors of the coefficient matrix A.

By calculating the eigenvalues, we find [tex]\lambda_1[/tex] = -3 and [tex]\lambda_2[/tex] = 2.

For each eigenvalue, we can find the corresponding eigenvector.

For  [tex]\lambda_1[/tex]= -3, the corresponding eigenvector is [1, -3].

For [tex]λ_2[/tex] = 2, the corresponding eigenvector is [4, -1].

Using these eigenvectors, we can construct the general solution as X(t) = [tex]c_1e^{(\lambda_1t)}[1, -3] + c_2e^{(\lambda_2t)}[4, -1][/tex].

Applying the initial conditions x(0) = 9 and y(0) = -6, we can determine the values of [tex]c_1[/tex] and [tex]c_2[/tex].

Substituting these values into the general solution, we obtain the specific solution x(t) = [tex]3e^t - 6e^{(-4t)}[/tex] and y(t) = [tex]-6e^{(-4t)} - 3e^t[/tex].

Learn more about matrix here:

https://brainly.com/question/28180105

#SPJ11

13. Given f(x)=x-10tan ¹x, find all critical points and determine the intervals of increase and decrease and local max/mins. Round answers to two decimal places when necessary. Show ALL your work, in

Answers

First, we find the derivative of f(x) using the chain rule and quotient rule:

f'(x) = 1 - 10sec²tan¹x * 1/(1+x²)

f'(x) = (1-x²-10tan²tan¹x)/(1+x²)

To find critical points, we set f'(x) = 0 and solve for x:

1-x²-10tan²tan¹x = 0

tan²tan¹x = (1 - x²)/10

tan¹x = √((1 - x²)/10)

x = tan(√((1 - x²)/10))

Using a graphing calculator, we can see that there is only one critical point located at x = 0.707.

Next, we determine the intervals of increase and decrease using the first derivative test and the critical point:

Interval (-∞, 0.707): f'(x) < 0, f(x) is decreasing

Interval (0.707, ∞): f'(x) > 0, f(x) is increasing

Since there is only one critical point, it must be a local extremum. To determine whether it is a maximum or minimum, we use the second derivative test:

f''(x) = (2x(2 - x²))/((1 + x²)³)

f''(0.707) = -2.67, therefore x = 0.707 is a local maximum.

In summary, the critical point is located at x = 0.707 and it is a local maximum. The function is decreasing on the interval (-∞, 0.707) and increasing on the interval (0.707, ∞).

Learn more about critical points here.

https://brainly.com/questions/32077588

#SPJ11

Use the given information to find the exact value of the trigonometric function. sin 8.0 lies in quadrant I Find sin √8+2√15 4 √√8-2√√15 4 O√10 4

Answers

The exact value of the trigonometric function is √(8-2√15)/4.

What is the trigonometric function?

Trigonometric functions, often known as circular functions, are simple functions of a triangle's angle. These trig functions define the relationship between the angles and sides of a triangle.

Here, we have

Given: sinθ = 1/4

We have to find the exact value of the trigonometric function.

cosθ = √1 - sin²θ

cosθ = √1- 1/16

cosθ = √15/4

Now, sinθ/2 = √(1-cosθ)/2

sinθ/2 = √(1-√15/4)/2

sinθ/2 = √(8-2√15)/16

sinθ/2  = √(8-2√15)/4

Hence, the exact value of the trigonometric function is √(8-2√15)/4.

To learn more about the trigonometric function from the given link

https://brainly.com/question/25618616

#SPJ4

5x² Show each step, and state if you utilize l'Hôpital's Rule. x-0 cos(4x)-1 2) (7 pts) Compute lim

Answers

To compute the limit as x approaches 0 of  [tex]\frac{5x^2}{cos(4x)-1}[/tex], we will utilize L'Hôpital's Rule. The limit evaluates to 5/8.

To compute the limit, we will apply L'Hôpital's Rule, which states that if the limit of a ratio of two functions exists in an indeterminate form (such as 0/0 or ∞/∞), then the limit of the ratio of their derivatives exists and is equal to the limit of the original function.

Let's evaluate the limit step by step:

lim (x->0)  [tex]\frac{5x^2}{cos(4x)-1}[/tex]

Since both the numerator and denominator approach 0 as x approaches 0, we have an indeterminate form of 0/0. Thus, we can apply L'Hôpital's Rule.

Taking the derivatives of the numerator and denominator:

lim (x->0) [tex]\frac{10x}{-4sin(4x)}[/tex]

Now we can evaluate the limit again:

lim (x->0) [tex]\frac{10x}{-4sin(4x)}[/tex]

Substituting x = 0 into the expression, we get:

lim (x->0) 0 / 0

Once again, we have an indeterminate form of 0/0. Applying L'Hôpital's Rule once more:

lim (x->0) [tex]\frac{10}{-16cos(4x)}[/tex]

Now we can evaluate the limit at x = 0:

lim (x->0)  [tex]\frac{10}{-16cos(4x)}[/tex] =  [tex]\frac{10}{-16cos(0)}[/tex] =  [tex]\frac{10}{-16(-1)}[/tex] = 10 / 16 = 5/8

Therefore, the limit as x approaches 0 of [tex]\frac{5x^2}{cos(4x)-1}[/tex] is 5/8.

Learn more about limit here:

https://brainly.com/question/12383180

#SPJ11

The correct question is:

Compute lim x->0   [tex]\frac{5x^2}{cos(4x)-1}[/tex]. Show each step, and state if you utilize l'Hôpital's Rule.

How many non-isomorphic trees with 5 vertices are there? (A tree is a connected graph with no cycles): (A) 1 (B) 2 (C) 3 (D) 4"

Answers

There are 15 non-isomorphic trees with 5 vertices. Hence the option C is correct.

The question is asking about the number of non-isomorphic trees with five vertices.

A tree is a connected graph with no kind of cycles.

So, for the given problem, we are required to find out the total number of non-isomorphic trees with 5 vertices.

We know that the number of non-isomorphic trees with n vertices is equal to n*(n-2)

For the given problem, n = 5

Therefore, the number of non-isomorphic trees with 5 vertices is equal to 5*(5-2) = 15

To learn more about vertices click here https://brainly.com/question/30116773

#SPJ11

Select the correct answer from each drop-down menu.
Simplify the following polynomial expression.

Answers

The polynomial simplifying to an expression that is a  (- x² + 8x + 1) with a degree of 2.

We have to given that,

Expression to solve is,

⇒ (3x² - x - 7) - (5x² - 4x - 2) + (x + 3) (x + 2)

Now, WE can simplify the expression as,

⇒ (3x² - x - 7) - (5x² - 4x - 2) + (x + 3) (x + 2)

⇒ (3x² - x - 7) - (5x² - 4x - 2) + (x² + 2x + 3x + 6)

⇒ 3x² - x - 7 - 5x² + 4x + 2 + x² + 5x + 6

⇒ 3x² - 5x² + x² - x + 4x + 5x - 7 + 2 + 6

⇒ - x² + 8x + 1

Therefore, The polynomial simplifying to an expression that is a

(- x² + 8x + 1) with a degree of 2.

Learn more about the mathematical expression visit:

brainly.com/question/1859113

#SPJ1

The red line segment on the number line below represents the segment from A to B, where A = -2 and B = 5. Find the value of the point A on segment AB that is of the distance from A to B.

Answers

The point on the segment AB that is 3/5 of the way from A to B is given as follows:

A. 2 and 1/5.

How to obtain the coordinates of the point?

The coordinates of the point on the segment AB that is 3/5 of the way from A to B is obtained applying the proportions in the context of the problem.

The point is 3/5 of the way from A to B, hence the equation is given as follows:

P - A = 3/5(B - A).

Replacing A = -2 and B = 5 on the equation, the value of P is given as follows:

P + 2 = 3/5(5 + 2)

P + 2 = 4.2

P = 2.2

P = 2 and 1/5.

More can be learned about proportions at https://brainly.com/question/24372153

#SPJ1

Let R be the rectangular region with (1,2) , (2,3) , (3,2) and
(2,1) as corners. Use change of variables to evaluate
integral (R) integral ln(x+y)dA

Answers

A rectangular R region with (1,2) , (2,3) , (3,2) and(2,1) as corners, then the value of the integral over R is 3 ln 3 - 2 using their limits of integration.

To evaluate the integral ∬_R ln(x+y) dA over the rectangular region R with corners (1,2), (2,3), (3,2), and (2,1), we can use the change of variables u = x + y and v = x - y. This transformation maps the region R to a parallelogram P with vertices at (3,1), (4,1), (3,4), and (2,4).

The Jacobian of this transformation is:

| ∂u/∂x  ∂u/∂y |

| ∂v/∂x  ∂v/∂y | = | 1 1 |

                            | 1 -1 | = -2

Therefore, the integral becomes:

∬_P ln(u)/|-2| dA

where u = x+y and v=x-y. Solving for x and y in terms of u and v, we get:

x = (u+v)/2

y = (u-v)/2

The limits of integration for u and v are determined by the vertices of the parallelogram P:

1 ≤ x-y ≤ 2    -->    -1 ≤ v ≤ 0

1 ≤ x+y ≤ 3    -->    1 ≤ u ≤ 3

3 ≤ x-y ≤ 4    -->    1 ≤ v ≤ 2

2 ≤ x+y ≤ 4    -->    3 ≤ u ≤ 4

Therefore, the integral becomes:

∬_P ln(u)/2 dA

= (1/2) ∫_1^3 ∫_{-u+1}^{u-1} ln(u) dv du + (1/2) ∫_3^4 ∫_{u-2}^{2-u} ln(u) dv du

= (1/2) ∫_1^3 [ln(u)(2-u+1-u)] du + (1/2) ∫_3^4 [ln(u)(2u-2u)] du

= (1/2) ∫_1^3 2ln(u) du

= ∫_1^3 ln(u) du

= [u ln(u) - u]_1^3

= 3 ln 3 - 2

Therefore, the value of the integral over R is 3 ln 3 - 2.

To know more about the limits of integration refer here :

https://brainly.com/question/31994684#

#SPJ11

Intellectual properties are key to various contractual agreements. Which of the following countries is NOT one of the top three countries in patent registration as of 2017 according to the information presented in the lecture? a. Japan b. USA c. U.K. d. China

Answers

Intellectual property is a crucial aspect of many contractual agreements, and patent registration is an important indicator of a country's innovation and competitiveness in the global market. The correct option is C. U.K.

According to the information presented in the lecture, the top three countries in patent registration as of 2017 are the United States, Japan, and China. These three countries account for the majority of patent filings globally and are known for their strong research and development capabilities.


It is worth noting that patent registration is not the only indicator of a country's intellectual property capabilities. Other factors such as copyright, trademarks, and trade secrets also play a crucial role in protecting and promoting innovation. Additionally, countries may have different approaches to intellectual property protection, with some emphasizing strong enforcement and others favoring more flexible regimes.

To know more about property visit:-

https://brainly.com/question/30339266

#SPJ11

4. What is the solution set to the following system of equations? x + 2 = 3 10 3+ y - 22 == Y - 32 = 8 (a) (3,7,1) (b) (3 – 2, 7+3z,0) (0) (3 – 2, 7+3z, z) (d) (3 – 2, 7+3z, 1) (e) No solution

Answers

Therefore, the solution set to the given system of equations is:(28, 21)

The given system of equations is:

x + 2 = 3 * 10

3 + y - 22 = y - 32 + 8

Simplifying the first equation, we get:

x + 2 = 30

x = 28

Substituting x = 28 in the second equation, we get:

3 + y - 22 = y - 32 + 8

Simplifying, we get:

y - y = 3 + 8 - 22 + 32

y = 21

Therefore, the solution set to the given system of equations is:

(28, 21)

We solved the given system of equations by eliminating one variable and finding the value of the other variable. The solution set represents the values of the variables that satisfy all the given equations in the system. In this case, there is only one solution, which is (28, 21). Therefore, the correct answer is (e) No solution.

To know more about equation visit :-

https://brainly.com/question/17145398

#SPJ11

Please show steps
Baile. Solve the initial value problem and state the interval of convergence: (e2y - y) cos(a)y' =sin(2x) with y(0) = 0

Answers

To solve the initial value problem (IVP) (e⁽²ʸ⁾ - y)cos(a)y' = sin(2x) with y(0) = 0, we can separate variables and then integrate both sides.

Here are the step-by-step solutions:

Step 1: Separate variables

Rearrange the equation to separate the variables y and x:

(e⁽²ʸ⁾ - y)cos(a)dy = sin(2x)dx

Step 2: Integrate both sides

Integrate both sides of the equation with respect to their respective variables:

∫(e⁽²ʸ⁾ - y)cos(a)dy = ∫sin(2x)dx

Step 3: Evaluate the integrals

Integrate each term separately:

∫e⁽²ʸ⁾cos(a)dy - ∫ycos(a)dy = ∫sin(2x)dx

Step 4: Evaluate the integrals on the left side

For the first integral, we can use u-substitution:

Let u = 2y, then du = 2dy

∫e⁽²ʸ⁾cos(a)dy = (1/2)∫eᵘᵈᵘ = (1/2)eᵘ + C1 = (1/2)e⁽²ʸ⁾ + C1

For the second integral, we integrate y with respect to y:

∫ycos(a)dy = (1/2)y²cos(a) + C2

Step 5: Simplify the equation

Substitute the evaluated integrals back into the equation:

(1/2)e⁽²ʸ⁾ + C1 - (1/2)y²cos(a) - C2 = ∫sin(2x)dx

Step 6: Evaluate the integral on the right side

Integrate sin(2x) with respect to x:

∫sin(2x)dx = -(1/2)cos(2x) + C3

Step 7: Combine constants

Combine the constants C1, C2, and C3 into a single constant C:

(1/2)e⁽²ʸ⁾ - (1/2)y²cos(a) + C = -(1/2)cos(2x) + C

Step 8: Solve for y

Rearrange the equation to solve for y:

(1/2)e⁽²ʸ⁾ - (1/2)y²cos(a) = -(1/2)cos(2x) + C

Step 9: Apply the initial condition

Use the initial condition y(0) = 0 to solve for the constant C:

(1/2)e⁰ - (1/2)(0)²cos(a) = -(1/2)cos(2(0)) + C

1/2 - 0 + C = -1/2 + C

1/2 = -1/2 + C

C = 1

Step 10: Final solution

Substitute the value of C back into the equation:

(1/2)e⁽²ʸ⁾ - (1/2)y²cos(a) = -(1/2)cos(2x) + 1

This is the solution to the initial value problem (IVP). The interval of convergence will depend on the range of validity of the functions involved, but without specific restrictions or constraints, the solution is valid for all real values of x and y.

Learn more about variables here:

https://brainly.com/question/31866372

#SPJ11

question 1 how many four digit counting numbers can be made from the digits 1, 2, 3 and 4 if 2 and 3 must be next to each other and if repetition is not permitted?

Answers

There are 72 four-digit counting numbers that can be made from the digits 1, 2, 3, and 4, with the condition that 2 and 3 must be next to each other, and repetition is not permitted.

How To count the number of four-digit counting numbers ?

To count the number of four-digit counting numbers that can be made from the digits 1, 2, 3, and 4, with the condition that 2 and 3 must be next to each other and repetition is not permitted, we can break down the problem into two steps:

Step 1: Count the number of arrangements of 2 and 3 being next to each other.

Step 2: Arrange the remaining digits (1 and 4) along with the arrangement from Step 1.

Step 1:

Since 2 and 3 must be next to each other, we can treat them as a single unit. So, we have three units: {23}, 1, and 4.

The units can be arranged in 3! (3 factorial) ways.

Step 2:

Now, we have three units: {23}, 1, and 4. These units can be arranged in 3! ways.

Additionally, within the {23} unit, the digits 2 and 3 can be arranged in 2! ways.

Therefore, the total number of arrangements is given by:

Total arrangements = (3!) * (3!) * (2!) = 6 * 6 * 2 = 72

Hence, there are 72 four-digit counting numbers that can be made from the digits 1, 2, 3, and 4, with the condition that 2 and 3 must be next to each other, and repetition is not permitted.

Learn more about counting numbers

https://brainly.com/question/29269537

#SPJ4

Let R be the region in the first quadrant of the xy-plane bounded by the hyperbolas xy = 1, xy = 25, and the Ines y=x,y=4x. Use the transformation x=y= uw with u> 0 and Y>O to rewrite the integral bel

Answers

To rewrite the integral in terms of the new variables u and w, we need to determine the limits of integration for the region R in the u-w plane.Let's first consider the equations of the boundaries of region R:xy = 1: Rewriting in terms of u and w using the transformation x = y = uw, we have uw * uw = 1, which simplifies to u^2w^2 = 1. Solving for w, we get w = 1/(u^2).

xy = 25: Using the same transformation, we have uw * uw = 25, which gives u^2w^2 = 25. Solving for w, we get w = 5/u.y = x: Substituting x = y = uw, we have w = u.y = 4x: Substituting x = y = uw, we have w = 4u.Now, let's determine the limits of integration in the u-w plane for region R:Since the region R is bounded by the hyperbolas xy = 1 and xy = 25, the limits of integration for w will be from 1/(u^2) to 5/u.

The limits of integration for u will be from u to 4u, as determined by the lines y = x and y = 4x.Therefore, the integral in terms of u and w can be rewritten as:[tex]∫∫R f(x, y) dA = ∫[u to 4u] ∫[1/(u^2) to 5/u] f(uw, w)[/tex]|J| dwdv,where f(uw, w) is the function being integrated, and |J| is the Jacobian determinant of the transformation.Note that the function f(uw, w) and the specific form of the integral depend on the original function being integrated over the region R.

To learn more about  integration click on the link below:

brainly.com/question/31727167

#SPJ11

Show all steps please
Calculate the work done by F = (x sin y, y) along the curve y = r2 from (-1, 1) to (2, 4)

Answers

The work done by the force F = (x sin y, y) along the curve y = r^2 from (-1, 1) to (2, 4) is 18.1089.

Step 1: Parameterize the curve:

Since the curve is defined by y = r^2, we can parameterize it as r(t) = (t, t^2), where t varies from -1 to 2.

Step 2: Calculate dr:

To find the differential displacement dr along the curve, we differentiate the parameterization with respect to t: dr = (dt, 2t dt).

Step 3: Substitute into the line integral formula:

The work done by the force F along the curve can be expressed as the line integral:

W = ∫C F · dr,

where F = (x sin y, y) and dr = (dt, 2t dt). Substituting these values:

W = ∫C (x sin y, y) · (dt, 2t dt).

Step 4: Evaluate the dot product:

The dot product (x sin y, y) · (dt, 2t dt) is given by (x sin y) dt + 2ty dt.

Step 5: Express x and y in terms of the parameter t:

Since x is simply t and y is t^2 based on the parameterization, we have:

(x sin y) dt + 2ty dt = (t sin (t^2)) dt + 2t(t^2) dt.

Step 6: Integrate over the given range:

Now, we integrate the expression with respect to t over the range -1 to 2:

W = ∫[-1 to 2] (t sin (t^2)) dt + ∫[-1 to 2] 2t(t^2) dt.

Step 7: Evaluate the integrals:

Using appropriate techniques to evaluate the integrals, we find that the first integral equals approximately -0.0914, and the second integral equals 18.2003.

Therefore, the work done by the force F along the curve y = r^2 from (-1, 1) to (2, 4) is approximately 18.1089 (rounded to four decimal places).

To learn more about curve  Click Here: brainly.com/question/32046743

#SPJ11

LINEARIZATION AND LAPLACE TRANSFORMS Question 1: Linearize the following differential equations dy +zy = dr a. d? dq = y2 + 2+ + = dt? dt b. dy dt ay +By? + y In y A, B, y: constants C. Q: constant dy

Answers

To linearize the given differential equations, we need to find the linear approximation of the nonlinear terms. In the first equation, the linearization involves finding the first derivative of y with respect to t, while in the second equation, we use logarithmic differentiation to linearize the nonlinear term. In both cases, the linearized equations help approximate the behavior of the original nonlinear equations.

a) To linearize the equation dy/dt + zy = r, we can write the linearized equation as d(y - y0)/dt + z(y - y0) = r - r0, where y0 and r0 are the values of y and r at a specific point. This linearization approximates the behavior of the original equation around the point (y0, r0). The linearization involves finding the first derivative of y with respect to t.

b) To linearize the equation dy/dt + ay + By^2 + yln(y) = Q, we can use logarithmic differentiation. Taking the natural logarithm of both sides of the equation, we get ln(dy/dt) + ln(y) + ln(a) + ln(B) + yln(y) = ln(Q). Then, we differentiate both sides with respect to t, resulting in 1/(y^2) * (dy/dt) + (1/y) * (dy/dt) + (1/y) * y + 0 + yln(y) * (dy/dt) = 0. This linearization allows us to approximate the behavior of the original nonlinear equation by neglecting higher-order terms.

In both cases, the linearized equations provide a simpler representation of the original equations, making it easier to analyze their behavior and approximate solutions.

Learn more about   logarithmic here: https://brainly.com/question/30226560

#SPJ11

Decide whether the series converge or diverge
12k9 Decide whether the series converges. k10 + 13k + 9 k=1 1 Use a comparison test to a p series where p = 1 k=1 12kº k10 + 13k + 9 k=1 So

Answers

We need to determine whether the series ∑ (12k^9) / (k^10 + 13k + 9) converges or diverges using a comparison test with a p-series where p = 1. The result is  that series ∑ (12k^9) / (k^10 + 13k + 9) diverges.

In order to use the comparison test, we need to find a series with known convergence properties to compare it with. Let's consider the p-series with p = 1, which is given by ∑ (1/k).

Now, we compare the given series ∑ (12k^9) / (k^10 + 13k + 9) with the p-series ∑ (1/k). To apply the comparison test, we take the limit as k approaches infinity of the ratio of the terms:

lim (k→∞) [(12k^9) / (k^10 + 13k + 9)] / (1/k)

Simplifying this expression, we get: lim (k→∞) [12k^10 / (k^10 + 13k + 9)]

The limit evaluates to 12, which is a finite non-zero number. Since the limit is finite and non-zero, we can conclude that the given series ∑ (12k^9) / (k^10 + 13k + 9) behaves in the same way as the p-series ∑ (1/k).

Since the p-series ∑ (1/k) diverges, the given series ∑ (12k^9) / (k^10 + 13k + 9) also diverges.

Therefore, the series ∑ (12k^9) / (k^10 + 13k + 9) diverges.

Learn more about p-series here: https://brainly.com/question/32256890

#SPJ11

Henderson Section 6a: Problem 2 Previous Problem List Next (1 point) Find the solution of the exponential equation 10% = 15 in terms of logarithms. x = Preview My Answers Submit Answers You have attempted this problem 0 times. You have unlimited attempts remaining. Email instructor

Answers

the solution of the exponential equation 10%x = 15 in terms of logarithms is [tex]x = -log_{10}(15)/log_{10}(10)[/tex].

The given exponential equation is 10%x = 15.

We need to find the solution of the exponential equation in terms of logarithms.

To solve the given equation, we first convert it to the logarithmic form using the following formula:

[tex]log_{a}(b) = c[/tex] if and only if [tex]a^c = b[/tex]

Taking logarithms to the base 10 on both sides, we get:

[tex]log_{10}10\%x = log_{10}15[/tex]

Now, by using the power rule of logarithms, we can write [tex]log_{10}10\%x[/tex] as [tex]x log_{10}10\%[/tex]

Using the change of base formula, we can rewrite [tex]log_{10}15[/tex] as [tex]log_{10}(15)/log_{10}(10)[/tex]

Substituting the above values in the equation, we get:

[tex]x log_{10}10\%[/tex] = [tex]log_{10}(15)/log_{10}(10)[/tex]

We know that [tex]log_{10}10\%[/tex] = -1, as [tex]10^{-1}[/tex] = 0.1

Substituting this value in the equation, we get:

x (-1) = [tex]log_{10}(15)/log_{10}(10)[/tex]

Simplifying the equation, we get:

x = -[tex]log_{10}(15)/log_{10}(10)[/tex]

To learn more about logarithms click here https://brainly.com/question/30226560

#SPJ11

A model for a certain population P(t) is given by the initial value problem dP dt = P(10-2 – 10-5P), PCO) 20, where t is measured in months. (a) What is the limiting value of the population? (b) At what time (i.e., after how many months) will the populaton be equal to one half of the limiting value in (a)?

Answers

The limiting value of the population is 1000.to determine the time at which the population will be equal to one half of the limiting value, we need to solve for t in the equation p(t) = 0.

to find the limiting value of the population, we need to determine the value that p(t) approaches as t approaches infinity. in this case, we can find the limiting value by setting dp/dt equal to zero and solving for p.

given: dp/dt = p(10⁽⁻²⁾ – 10⁽⁻⁵⁾p)

setting dp/dt = 0, we have:p(10⁽⁻²⁾ – 10⁽⁻⁵⁾p) = 0

from this equation, we can see that either p = 0 or (10⁽⁻²⁾ – 10⁽⁻⁵⁾p) = 0.

if p = 0, then it remains zero and does not change. however, this would not be a meaningful limiting value for the population.

to find the non-zero limiting value, we solve (10⁽⁻²⁾ – 10⁽⁻⁵⁾p) = 0:

10⁽⁻²⁾ – 10⁽⁻⁵⁾p = 010⁽⁻²⁾ = 10⁽⁻⁵⁾p

p = 10⁽⁻²⁾/10⁽⁻⁵⁾p = 10³

p = 1000 5 * 1000 = 500.

given: dp/dt = p(10⁽⁻²⁾ – 10⁽⁻⁵⁾p), p(0) = 20

we can solve this differential equation to find the population function p(t), then solve for t when p(t) = 500.

however, since the specific solution to the differential equation is not provided, we are unable to calculate the exact time at which the population will be equal to one half of the limiting value without further information or the solution to the differential equation.

Learn more about function here:

https://brainly.com/question/30721594

#SPJ11

For y=f(x) = 5x - 4, x = 2, and Ax = 3 find a) Ay for the given x and Ax values, b) dy=f'(x)dx, c) dy for the given x and Ax values.

Answers

Ay(derivative) for the given x and Ax values is 11 , dy=f'(x)dx is 5dx and dy for x and Ax is 15

Let's have further explanation:

a) By substituting the given value of x and Ax, we get:

Ay = 5(3) - 4 = 11

b) The derivative of the function is given by dy = f'(x)dx = 5dx

c) By substituting the given value of x, we can calculate the value of dy as:

dy = f'(2)dx = 5(3) = 15

To know more about derivative refer here:

https://brainly.com/question/29020856#

#SPJ11

It snowed from 7:56 am to 11:39 am. How long was it snowing?

Answers

Answer:

It was snowing for 4 hours and 23 minutes

Step-by-step explanation:

11:39

- 7:56

-----------

 383

83

- 60

--------

 23

4 hours and 23 minutes.

Other Questions
how many sensory modalities can a single sensory neuron have HELP PLEASE!!TIMED!!60pts!!_______________________3. Answer the following questions and then respond to two other posts.1. What is the importance of local, state and federal support in the revitalization of Oklahoma City?2. What were the costs of Homeland Security?3. How has security changed since the OKC bombing?4. Why should a state be financially prepared for all types of emergencies?5. How can states be financially prepared for all types of emergencies? Find all the higher derivatives of the following function. f(x) = 5x3 - 6x4 f'(x) = f''(x) = f'''(x) = f(4)(x) = = f(5)(x) = 0 Will all derivatives higher than the fifth derivative evaluate to zero? 0 assume inflation expectations are adaptive. the slope of the phillips curve is 1/3. imagine short run output is 2% forever. inflation expectations today are 4%. the cost-push shock is equal to zero forever. how much is inflation today? how about next year? the year after? An interpersonal relationship differs from an impersonal one becauseA. we share our thoughts and feelings with each other.B. the other person's life affects ours.C. we are sad when the relationship changes or ends.D. we find the time spent in the relationship rewarding.E. all of the above. Zimmer Inc. typically receives 770 checks everyday and the average size of check is $720. The company is now considering using a lockbox system. The lockbox system costs with $0.20 per check. It can reduce the collection time by two (2) days. What is the NPV of the new lockbox system? Assuming the daily interest rate is 0.014%. albert bandura believed that our behaviors could be influenced by aco ltd mined diamonds at a cost of fc 1,000,000 and sold them to beako for fc 2,500,000. beako distributed the diamonds to its customers and received fc 4,000,000. if the national vat is 20%, how much tax did beako pay on purchase from aco ltd. true/false: you can use either a drop or keep option to subset the columns (variables) of a dataset Suppose that we back-test a VaR model using 500 days of data. The VaR confidence level is 99% and we observe 9 exceptions. Should we reject the model at the 5% confidence level? Please choose the right answer with the right reason. (Please use the "Convenient Shortcut" discussed in class to back-test the VaR model.) Given: is a right angleProve: A perpendicular line between AC and BD has a point of intersection of midpoint OSince is a right angle, it is. Is supplementary to , so. By the substitution property of equality,. Applying the subtraction property of equality,. What statement is missing from the proof? how many moles of oxygen gas are needed to completely react with 145 grams of aluminum check that the following differential forms are exact and find the solutions to the corresponding initial value problems.(1) y/t+1 dt + (ln(t+1) + 3y^2 )dy = 0, y(0) = 1(2) (3t^2y - 2t) dt + (t^3 +6y - y^2) dy = 0, y(0) = 3 Given cos theta= 2/3 and angle theta is in Quadrant I, what is the exact value of sin theta in simplest form? Simplify all radicals if needed. Determine the frequency ofe wave with wavelength of 6.00 km Constants Consider electromagnetic waves propagating in air: Azd E f = 5.1013 Hz Submit Previous_Answers Request Answer Incorrect; 12. Determine the slope of the tangent to the curve y=2sinx + sinx when x = a) b) 0 c) 323 5 d) 3+2/3 4 2 Explain why crusaders we motivated to go on the third crusade? (12 marks) Select the correct answer PLEASE HELP The Coat Department had a physical inventory of $2,486,533 and a book inventory of $2,344,531 a. What is the dollar value of the shortage /overage? $ 142,002.00 b. Is this an Overage or a Shortage? Overage For each reaction, write the chemical formulae of the oxidized reactants in the space provided. Write the chemical formulae of the reduced reactants in the space provided reactants oxidired: Fel, (g) + Mg(6) -- Mel, (a) + Fe(s) reactants reduced: 5 ? reactants Oxidized: 0 FeSO. (4) + Zn() - Fe() +250, laq) reactants reduced: reactants Oxidized 2F+(x) + 3Pb(NO),(-) - 3Pb(a) + 2Fe(NO), (e) reactants a reduced: