t/f) the estimated p-hat is a random variable. with different samples, we will get slightly different p-hats. true false

Answers

Answer 1

True, the estimated p-hat is a random variable and will vary slightly with different samples.

The estimated p-hat is the proportion of successes in a sample, used to estimate the population proportion. As it is calculated based on a sample, the p-hat will vary slightly with different samples. This is because each sample is unique and may not perfectly represent the population. Therefore, the estimated p-hat is considered a random variable. However, as the sample size increases, the variability in the p-hat decreases, leading to a more accurate estimate of the population proportion.

In summary, the estimated p-hat is a random variable and will vary slightly with different samples. It is important to consider the sample size when interpreting the variability of the p-hat and its accuracy in estimating the population proportion.

To know more about Random Variables visit:

https://brainly.com/question/30789758

#SPJ11


Related Questions

there are two misshapen coins in a box; the probabilities they land heads when flipped are 0.4 and 0.7. one of the coins is to be randomly chosen and flipped 10 times. given that exactly two of the first three flips landed heads, what is the conditional expected number of heads in the 10 flips?

Answers

The conditional expected number of heads in the 10 flips, given that exactly two of the first three flips landed heads, can be calculated by taking the weighted average of the expected number of heads for each coin. Using the probabilities of choosing each coin and the conditional probabilities of obtaining two heads in three flips for each coin, the conditional expected number of heads can be determined.

To solve this problem, we need to use conditional probability and expected value concepts. Let's denote the event of choosing the 0.4 probability coin as A and the event of choosing the 0.7 probability coin as B. We need to calculate the conditional expected number of heads in the 10 flips given that exactly two of the first three flips landed heads.

First, we calculate the probability of choosing each coin. Since there are two coins in the box and they are equally likely to be chosen, the probability of choosing each coin is 0.5.

Next, we calculate the conditional probability of obtaining exactly two heads in the first three flips given that coin A is chosen. The probability of getting exactly two heads in three flips with a 0.4 probability coin is given by the binomial distribution formula: P(2 heads in 3 flips | A) = (3 choose 2) * (0.4)² * (1 - 0.4).

Similarly, we calculate the conditional probability of obtaining exactly two heads in the first three flips given that coin B is chosen. The probability of getting exactly two heads in three flips with a 0.7 probability coin is:

P(2 heads in 3 flips | B) = (3 choose 2) * (0.7)² * (1 - 0.7).

Using these probabilities, we can calculate the conditional expected number of heads in the 10 flips by taking the weighted average of the expected number of heads for each coin. The conditional expected number of heads in the 10 flips is given by: (0.5 * P(2 heads in 3 flips | A) * 10) + (0.5 * P(2 heads in 3 flips | B) * 10).

By substituting the calculated values into this formula, we can find the conditional expected number of heads in the 10 flips given that exactly two of the first three flips landed heads.

Learn more about probability here: https://brainly.com/question/31828911

#SPJ11

Based on the histogram shown, of the following, which is closest to the average (arithmetic mean) number of seeds per apple?
a) 3
b) 4
c) 5
d) 6
e) 7

Answers

Based on the histogram shown, of the following, which is closest to the average (arithmetic mean) number of seeds per is option (c) 5.

Explanation: Looking at the histogram, we can see that the bar for 5 seeds has the highest frequency, which means that the number of apples with 5 seeds is the highest. Therefore, it is most likely that the average number of seeds per apple is closest to 5.

Based on the given histogram, we can conclude that the option closest to the average number of seeds per apple is (c) 5.
Based on the histogram shown, the closest average (arithmetic mean) number of seeds per apple is option (b) 4.

To find the average (arithmetic mean) number of seeds per apple from the histogram, follow these steps:

1. Determine the frequency of each number of seeds (how many apples have a certain number of seeds).
2. Multiply each number of seeds by its frequency.
3. Add up the products from step 2.
4. Divide the sum from step 3 by the total number of apples (the sum of frequencies).

Based on the given information and the calculation steps, the closest average (arithmetic mean) number of seeds per apple is 4, which corresponds to option (b).

To know more about average, visit:

https://brainly.com/question/24057012

#SPJ11

Find any local max/mins for f(x,y) = x2 + xy + y2 + y

Answers

The function f(x, y) = x^2 + xy + y^2 + y has a local minimum at the point (-1, 2).

To find the local maxima and minima for the function [tex]f(x, y) = x^2 + xy + y^2 + y[/tex], we need to calculate the partial derivatives with respect to x and y, set them equal to zero, and solve the resulting system of equations.

First, let's find the partial derivatives of f(x, y) with respect to x and y:

∂f/∂x = 2x + y

∂f/∂y = x + 2y + 1

To find the critical points, we set both partial derivatives equal to zero and solve the resulting system of equations:

2x + y = 0

x + 2y + 1 = 0

Solving this system of equations, we find the unique solution x = -1 and y = 2. Therefore, the point (-1, 2) is a critical point.

Next, we need to determine the nature of the critical point (-1, 2). To do this, we evaluate the second partial derivatives:

∂²f/∂x² = 2

∂²f/∂y² = 2

∂²f/∂x∂y = 1

Using the second derivative test, we form the discriminant D:

D = (∂²f/∂x²)(∂²f/∂y²) - (∂²f/∂x∂y)² = (2)(2) - (1)² = 4 - 1 = 3

Since the discriminant D is positive, and ∂²f/∂x² = 2 > 0, the critical point (-1, 2) corresponds to a local minimum.

Therefore, the function f(x, y) = x^2 + xy + y^2 + y has a local minimum at (-1, 2).

Learn more about local maxima here:

https://brainly.com/question/29167373

#SPJ11

What is the value of t?



t+18

2t

Answers

Answer:

  t = 18

Step-by-step explanation:

Given that chords RS = 2t and PQ = (t+18) subtend arcs marked as congruent, you want to know the value of t.

Chords

Chords that subtend congruent arcs are congruent:

  RS = PQ

  2t = t +18

  t = 18 . . . . . . . . subtract t

The value of t is 18.

<95141404393>

Let E be an elliptic curve over Fp and let P and Q be points in E(Fp). Assume that Q is a multiple of P and let n > 0 be the smallest solution to Q = [n]P. Which of the following statements is true? a) n is the order of P. b) n is the order of Q. c) n is the order of the group E(Fp). d) None of the above.

Answers

The correct statement is d) None of the above. In fact, the order of the group E(Fp) can be any prime or power of a prime, so it is unlikely that n would be equal to it.

The order of P and Q are not necessarily equal in an elliptic curve, and neither of them necessarily equals the order of the group E(Fp).
If P has order r and Q is a multiple of P, then Q has order s = n*r. In general, the order of a point on an elliptic curve can be any divisor of the order of the group E(Fp), so it is not necessarily equal to the group order.

a) n is the order of P: This is not necessarily true. The order of P can be any divisor of the order of the group E(Fp). The only thing we know for sure is that n is a multiple of the order of P, since Q is a multiple of P.
b) n is the order of Q: This is also not necessarily true. Q has order s = n*r, where r is the order of P. Again, the order of Q can be any divisor of the order of the group E(Fp).
c) n is the order of the group E(Fp): This is not true either. In fact, the order of the group E(Fp) can be any prime or power of a prime, so it is unlikely that n would be equal to it.
Therefore, the correct answer is d) None of the above.

To know more about elliptic curve visit :-

https://brainly.com/question/30882626

#SPJ11

2. Calculate the dot product of two vectors, ã and 5 which have an angle of 150° between them, where lä= 4 and 161 = 7.

Answers

The dot product of the two vectors a and b is -20.78

How to calculate the dot product of the two vectors

From the question, we have the following parameters that can be used in our computation:

|a| = 4

|b| = 7

Angle, θ = 150

The dot product of the two vectors can be calculated using the following law of cosines

a * b = |a||b| cos(θ)

Where θ is in radians

Convert 150 degrees to radians

So, we have

θ = 150° × π/180 = 2.618 rad

The equation becomes

a * b = 4 * 6 cos(2.618)

Evaluate

a * b = -20.78

Hence, the dot product is -20.78

Read more about dot product at

https://brainly.com/question/30404163

#SPJ4

Question

Calculate the dot product of two vectors, a and b which have an angle of 150° between them, where |a|= 4 and |b| = 7.

Find the area enclosed by the given parametric curve and the y-axis.
x = sin^2(t) , y = cos(t)

Answers

The area enclosed by the parametric curve x = sin^2(t) and y = cos(t) and the y-axis can be found by integrating the absolute value of x with respect to y over the range of y-values for which the curve exists.

To find the area enclosed by the parametric curve and the y-axis, we need to determine the range of y-values for which the curve exists. From the given parametric equations, we can see that the y-values range from -1 to 1.

Next, we need to express x in terms of y by solving the equation sin^2(t) = x for t. This yields t = arcsin(sqrt(x)).

Now, we can calculate the integral of |x| with respect to y over the range -1 to 1:

∫(|x|)dy = ∫(|sin^2(t)|)dy = ∫(|sin^2(arcsin(sqrt(x)))|)dy

Simplifying the expression, we have:

∫(sqrt(x))dy = ∫sqrt(x)dy

Integrating with respect to y, we get:

∫sqrt(x)dy = 1/2 ∫sqrt(x)dx = 1/2 ∫sqrt(sin^2(t))dt = 1/2 ∫sin(t)dt = 1/2 * (-cos(t))

Evaluating the integral from -1 to 1, we have:

1/2 * (-cos(π/2) - (-cos(-π/2))) = 1/2 * (-(-1) - (-(-1))) = 1/2 * (-1 - 1) = 1/2 * (-2) = -1

Therefore, the area enclosed by the given parametric curve and the y-axis is 1/2 square units

Learn more about parametric curve here:

https://brainly.com/question/28537985

#SPJ11

Differentiate the following function. y = CSc(0) (0 + cot ) = y' =

Answers

We can use the product rule to differentiate the function y = Csc() ( + cot()). Find the derivative of the first term, Csc(), first.

The chain rule can be used to get the derivative of Csc(): Csc() = -Csc() Cot() = d/d.

The derivative of the second term, ( + Cot()), will now be determined.

Simply 1, then, is the derivative of with respect to.

The chain rule can be used to get the derivative of Cot(): d/d (Cot()) = -Csc2(d).

The product rule is now applied: y' = (Csc() Cot()) + (1)( + Cot()) = Csc() Cot() + + Cot().

Therefore, y' = Csc() Cot() + + Cot() is the derivative of y with respect to.

Please be aware that while differentiating with regard to, the derivative is unaffected by the constant C and remains intact.

Learn more about derivative  here :

https://brainly.com/question/29144258

#SPJ11

At the given point, find the slope of the curve, the line that is tangent to the curve, or the line that is normal to the curve, as requested 5x?y- * cos y = 67, tangent at (1,1) 3x O A. y=- 2x+ 2 OB. y = - 2x + x OC. y = xx OD. = - 2x + 3x

Answers

The line that is tangent to the curve 5x⋅sin(y) - cos(y) = 67 at the point (1,1) is given by the equation y = -π/2x + 3π/2. The correct option is A.

To find the slope of the tangent line, we need to find the derivative of the function with respect to x and evaluate it at the point (1,1). Taking the derivative of 5x⋅sin(y) - cos(y) = 67 implicitly with respect to x,

we get 5⋅sin(y) + 5x⋅cos(y)⋅y' + sin(y)⋅y' + cos(y)⋅y' = 0.

Simplifying, we have (5⋅sin(y) + sin(y))⋅y' + 5x⋅cos(y)⋅y' + cos(y)⋅y' = 0.

Substituting the point (1,1) into the equation, we have (5⋅sin(1) + sin(1))⋅y' + 5⋅cos(1)⋅y' + cos(1)⋅y' = 0.

Evaluating the trigonometric functions, we get (5⋅sin(1) + sin(1) + 5⋅cos(1) + cos(1))⋅y' = 0. Simplifying further, we have (6⋅sin(1) + 6⋅cos(1))⋅y' = 0.

Since y' cannot be zero (as it represents the slope of the tangent line), we set the coefficient of y' equal to zero: 6⋅sin(1) + 6⋅cos(1) = 0. Solving this equation gives sin(1) + cos(1) = 0.

The line that satisfies the equation y = -π/2x + 3π/2 has a slope of -π/2. Comparing this slope with the slope obtained from the equation sin(1) + cos(1) = 0, we see that they are equal. Therefore, the line y = -π/2x + 3π/2 is the tangent line to the curve at the point (1,1). Therefore, the correct option is A. y = -π/2x + 3π/2.

To know more about tangent, refer here:

https://brainly.com/question/32258856#

#SPJ11

Complete question:

At the given point, find the slope of the curve, the line that is tangent to the curve, or the line that is normal to the curve, as requested 5x?y- * cos y = 67, tangent at (1,1) 3x

A. y=- π/ 2x+ 3π/2

B. y = - 2πx + x

C. y = πx

D. = - 2πx + 3π

(1 point) Evaluate the indefinite integral. | (62)* + 462°) (63)* + 1)" dz = x(6237'3 mp-13[68275-1762521-urte 4)(3 (+ 1)^((+()+1/78)

Answers

We can divide the indefinite integral based on the absolute value function to get the value of the indefinite integral |(62x)(3/2) + 462x(1/3)| (63x)(1/2) + 1 dx.

Let's examine each of the two examples in isolation:

Case 1: 0 if (62x)(3/2) + 462x(1/3)

In this instance, the integral can be rewritten as [(62x)(3/2) + 462x(1/3)]. (63x)^(1/2) + 1 dx.We can distribute and combine like terms to simplify the integral: [(62x)(3/2) * (63x)(1/2)] + [(62x)^(3/2) * 1] + [462x^(1/3) * (63x)^(1/2)] + [462x^(1/3) * 1] dx.

Using the exponentiation principles, we can now simplify each term as follows: [62(3/2) * 63(1/2) * x(3/2 + 1/2)] + [62^(3/2) * x^(3/2)] + [462 * 63^(1/2) * x^(1/3 + 1/2)] + [462 * x^(1/3)] dx.

To put it even more simply: [62(3/2) * 63(1/2) * x2] + [62(3/2) * x(3/2)] + [462 * 63^(1/2) * x^(5/6)] + [462 * x^(1/3)] dx.

learn more about integral here :

https://brainly.com/question/31059545

#SPJ11

find the mass of the rectangular region 0≤x≤4, 0≤y≤3 with density function rho(x,y)=3−y

Answers

To find the mass of the rectangular region with the given density function rho(x, y) = 3 - y, where 0 ≤ x ≤ 4 and 0 ≤ y ≤ 3, we need to calculate the double integral of the density function over the region.

The mass of a region can be found by integrating the product of the density function and the area element over the region. In this case, the density function is rho(x, y) = 3 - y.

To calculate the mass, we need to set up the double integral over the rectangular region. The integral is given by:

M = ∬(0 to 4)(0 to 3) (3 - y) dA

To evaluate this integral, we integrate with respect to y first, and then with respect to x:

M = ∫(0 to 4) ∫(0 to 3) (3 - y) dy dx

Integrating with respect to y, we get:

M = ∫(0 to 4) [3y - (1/2)y^2] (0 to 3) dx

Simplifying the integral, we have:

M = ∫(0 to 4) (9/2) dx

Evaluating the integral, we get:

M = (9/2) * x | (0 to 4)

M = (9/2) * 4 - (9/2) * 0

M = 18

Therefore, the mass of the rectangular region is 18

Learn more about rectangular region here:

https://brainly.com/question/6910306

#SPJ11

Question * Let D be the region bounded by the two paraboloids z = 2x² + 2y² - 4 and z = 5 x² - y² where x ≥ 0 and y 20. Which of the following triple integral in cylindrical coordinates allows u

Answers

Therefore, the correct triple integral in cylindrical coordinates that allows us to find the volume of the region bounded by the two paraboloids is:

∫∫∫(D)dzrdrdθ, with the limits of integration.

In cylindrical coordinates, the conversion equations are:

x = r cosθ

y = r sinθ

z = z

Let's express the equations of the paraboloids in cylindrical coordinates:

For the paraboloid z = 2x² + 2y² - 4:

Substituting x = r cosθ and y = r sinθ:

z=2(rcosθ)²+2(rsinθ)²−4z

=2r²(cos²θ+sin²θ)−4z

=2r²−4

For the paraboloid z = 5x² - y²:

Substituting x = r cosθ and y = r sinθ:

z = 5(r cosθ)² - (r sinθ)²

z = 5r²(cos²θ - sin²θ)

Now, let's determine the limits of integration for each variable:

For cylindrical coordinates, the limits are:

0 ≤ r ≤ ∞ (since x ≥ 0)

0 ≤ θ ≤ 2π (to cover the full circle)

For z, we need to find the bounds of the region defined by the paraboloids. The region is bounded between the two paraboloids, so the upper bound for z is the equation of the upper paraboloid, and the lower bound for z is the equation of the lower paraboloid.

Lower bound for z: z = 2r² - 4

Upper bound for z: z = 5r²(cos²θ−sin²θ)

Now, we can set up the triple integral in cylindrical coordinates for finding the volume:

∫∫∫(D)dzrdrdθ

The limits of integration are:

0 ≤ r ≤ ∞

0 ≤ θ ≤ 2π

2r²−4≤z≤5r²(cos²θ−sin²θ)

Therefore, the correct triple integral in cylindrical coordinates that allows us to find the volume of the region bounded by the two paraboloids is:

∫∫∫(D)dzrdrdθ, with the limits of integration as mentioned above.

Learn more about integral here:

https://brainly.com/question/22008756

#SPJ11




In 11 Evaluate s coth (5x)dx. In 6 In 11 5 coth (5x)dx= In 6 (Round to the nearest hundredth as needed.)

Answers

The value of the definite integral [tex]\(\int_6^{11} \coth(5x) \, dx\)[/tex] is approximately [tex]\(\ln(6)\).[/tex]

What makes anything an integral?

To complete the whole, an essential component is required. The term "essential" is almost a synonym in this context. Integrals of functions and equations are a concept in mathematics. Integral is a derivative of Middle English, Latin integer, and Mediaeval Latin integralis, both of which mean "making up a whole."

To evaluate the integral

[tex]\[\int \coth(5x) \, dx\][/tex]

we can use the substitution method. Let's proceed step by step.

First, we rewrite the integrand using the identity [tex]\(\coth(x) = \frac{1}{\tanh(x)}\):[/tex]

[tex]\[\int \frac{1}{\tanh(5x)} \, dx\][/tex]

Next, we substitute [tex]\(u = \tanh(5x)\), which implies \(du = 5 \, \text{sech}^2(5x) \, dx\):[/tex]

[tex]\[\int \frac{1}{\tanh(5x)} \, dx = \int \frac{1}{u} \cdot \frac{1}{5} \cdot \frac{1}{\text{sech}^2(5x)} \, du = \frac{1}{5} \int \frac{1}{u} \, du\][/tex]

Simplifying, we find:

[tex]\[\frac{1}{5} \ln|u| + C = \frac{1}{5} \ln|\tanh(5x)| + C\][/tex]

Therefore, the evaluated integral is [tex]\(\frac{1}{5} \ln|\tanh(5x)| + C\).[/tex]

To evaluate the definite integral  [tex]\(\int_6^{11} \coth(5x) \, dx\)[/tex], we can substitute the limits into the antiderivative:

[tex]\[\frac{1}{5} \ln|\tanh(5x)| \Bigg|_6^{11} = \frac{1}{5} \left(\ln|\tanh(55)| - \ln|\tanh(30)|\right) \approx \ln(6)\][/tex]

Therefore, the value of the definite integral [tex]\(\int_6^{11} \coth(5x) \, dx\)[/tex] is approximately [tex]\(\ln(6)\).[/tex]

To learn more about integral from the given link

https://brainly.com/question/30094386

#SPJ4

A patio lounge chair can be reclined at various angles, one of which is illustrated below.

.
Based on the given measurements, at what angle, θ, is this chair currently reclined? Approximate to the nearest tenth of a degree.

a. 31.4 b. 33.2 c. 40.2 d. 48.6

Answers

Answer:

option c 40.2

Step-by-step explanation:

from the given figure,

∅ = sin¬ perpendicular/hypotenuse

where ¬ symbol stands for inverse of sin

= sin¬ 31/48

= 40.228°

the chair currently reclined to the nearest tenth of a degree

= 40.2°

Find the exact length of the curve
{x=5+12t2y=6+8t3{x=5+12t2y=6+8t3 for 0≤t≤30≤t≤3

Answers

To find the exact length of the curve given by x = 5 + 12t^2 and y = 6 + 8t^3 for 0 ≤ t ≤ 3, we need to use the arc length formula.

The arc length formula for a parametric curve defined by x = f(t) and y = g(t) is given by: L = ∫√(f'(t)^2 + g'(t)^2) dt. For our curve, we have x = 5 + 12t^2 and y = 6 + 8t^3. Let's find the derivatives: dx/dt = 24t, dy/dt = 24t^2

Now, we can calculate the integrand in the arc length formula:√(dx/dt)^2 + (dy/dt)^2 = √((24t)^2 + (24t^2)^2) = √(576t^2 + 576t^4) = √(576t^2(1 + t^2)) = 24t√(1 + t^2). Next, we integrate the expression: L = ∫0^3 24t√(1 + t^2) dt. Unfortunately, this integral does not have a simple closed-form solution. However, it can be approximated using numerical methods such as Simpson's rule or the trapezoidal rule. These methods divide the interval [0, 3] into smaller subintervals and approximate the integral using the values of the function at specific points within each subinterval.

Using numerical methods, we can compute an approximate value for the length of the curve between t = 0 and t = 3. The accuracy of the approximation depends on the number of subintervals used and the precision of the numerical method employed.

To learn more about Simpson's rule click here:

brainly.com/question/29277706

#SPJ11

A study was conducted to see if students from public high schools were more likely to attend public colleges compared to students from private high schools. Of a random sample of 100 students from public high schools, 60 were planning to attend a public college. Of a random sample of 100 students from private high schools, 50 of them planned to attend a public college. What are the two independent samples in this study? The students at public high schools and the students at private high schools. Public college or non-public college. Public and private high schools The students at public colleges and the students at private colleges

Answers

This comparison can provide insights into potential disparities in college choices based on the type of high school attended.

The students from public high schools and private high schools are the two independent samples in this study. The goal of the study is to compare how likely these two groups are to attend public colleges.

The principal test comprises of 100 understudies haphazardly chose from public secondary schools. Out of this example, 60 understudies were intending to go to a public school. The second sample consists of 50 students who planned to attend a public college out of a total of 100 students who were selected at random from private high schools.

By contrasting the extents of understudies arranging with go to public universities in each example, the review tries to decide whether there is a tremendous distinction in the probability of going to public universities between understudies from public secondary schools and those from private secondary schools. Based on the type of high school attended, this comparison may provide insight into potential disparities in college choices.

To know more about probability refer to

https://brainly.com/question/31828911

#SPJ11

A
painting purchased in 1998 for $150,000 is estimated to be worth
v(t) = 150, 000e ^ (i / 6) dollars after t years . At what rate
will the painting be appreciating in 2006 ?
A painting purchased in 1999 for $150,000 is estimated to be worthy(t) = 150,000 e 16 dollars after years. At what rate will the painting be appreciating in 2006? In 2006, the painting will be appreci

Answers

the rate at which the painting will be appreciating in 2006 is approximately 4,267.36i dollars per year.

A painting purchase in 1998 for $150,000 is estimated to be worth v(t) = 150, 000e^(i/6) dollars after t years.

We have to find out the rate at which the painting will be appreciating in 2006.

In 2006, the time for the painting is t = 2006 - 1998 = 8 years.

The value function is: [tex]v(t) = 150,000e^{(i/6)}[/tex] dollars

Taking the derivative of the given value function with respect to time 't' will give the rate of appreciation of the painting.

So, the derivative of the value function is given by:

[tex]dv/dt = d/dt [150,000e^{(i/6)}]dv/dt = 150,000 x d/dt [e^{(i/6)}][/tex] (using the chain rule)

We know that [tex]d/dt[e^{(kt)}] = ke^{(kt)}[/tex]

Therefore, [tex]d/dt [e^{(i/6)}] = (i/6)e^{(i/6)}[/tex]

Hence, [tex]dv/dt = 150,000 x (i/6)e^{(i/6)}[/tex]

Therefore, the rate at which the painting will be appreciating in 2006 is given by:

dv/dt = 150,000 x (i/6)e^(i/6) = 150,000 x (i/6)e^(i/6) x (365/365) ≈ 4,267.36i dollars per year

To learn more about purchase click here https://brainly.com/question/29484017

#SPJ11

Use Simpson's Rule and the Trapezoid Rule to estimate the value of the integral L²(x² + 3x² (x³ + 3x²-x-3) dx. In both cases, use n = 2 subdivisions. Simpson's Rule approximation S₂ = Trapezoid Rule approximation T₂ = Hint: f(-2)=3, f(0) = -3, and f(2)= 15 for the integrand f. Note: Simpson's rule with n= 2 (or larger) gives the exact value of the integral of a cubic function.

Answers

Simpson's Rule gives the exact value for the integral of a cubic function, so it will provide an accurate approximation.

First, let's divide the interval [L, L²] into n = 2 subdivisions. Since L = -2 and L² = 4, the subdivisions are [-2, 0] and [0, 4].

Using Simpson's Rule, the approximation S₂ is given by:

S₂ = (Δx/3) * [f(x₀) + 4f(x₁) + 2f(x₂) + 4f(x₃) + f(x₄)],

where Δx = (x₄ - x₀) / 2 and x₀ = -2, x₁ = -1, x₂ = 0, x₃ = 2, x₄ = 4.

Plugging in the values, we get:

Δx = (4 - (-2)) / 2 = 3,

S₂ = (3/3) * [f(-2) + 4f(-1) + 2f(0) + 4f(2) + f(4)].

Now, using the provided values for f(-2), f(0), and f(2), we can calculate the approximation S₂.

Similarly, using the Trapezoid Rule, the approximation T₂ is given by:

T₂ = (Δx/2) * [f(x₀) + 2f(x₁) + 2f(x₂) + f(x₃)].

We can calculate the approximation T₂ by plugging in the values for Δx, x₀, x₁, x₂, and x₃, and evaluating the function f at those points.

Comparing the values obtained from Simpson's Rule and the Trapezoid Rule will allow us to assess the accuracy of each method in approximating the integral.

Learn more about Simpson's Rule here:

https://brainly.com/question/30459578

#SPJ11

Use the binomial formula to find the coefficient of the y? m² term in the expansion of (y - 3 m)". 12 2 0 Х 5 ?

Answers

Using the binomial formula the coefficient of the y^2m^5 term in the expansion of (y – 3m)^12 is 792.

To find the coefficient of the y^2m^5 term in the expansion of (y – 3m)^12, we can use the binomial formula. The binomial formula states that the coefficient of the term with y^a * m^b is given by the expression:

C(n, k) * y^(n – k) * (-3m)^k

Where C(n, k) is the binomial coefficient, n is the exponent of the binomial, k is the power of (-3m), and n – k is the power of y.

In this case, we have n = 12, k = 5, and a = 2, b = 5. Substituting these values into the formula, we get:

C(12, 5) * y^(12 – 5) * (-3m)^5

The binomial coefficient C(12, 5) can be calculated as:

C(12, 5) = 12! / (5! * (12 – 5)!)

         = 12! / (5! * 7!)

Simplifying further, we have:

C(12, 5) = (12 * 11 * 10 * 9 * 8) / (5 * 4 * 3 * 2 * 1)

        = 792

Substituting this value back into the formula, we get:

792 * y^7 * (-3m)^5

Therefore, the coefficient of the y^2m^5 term in the expansion of (y – 3m)^12 is 792.

Learn more about binomial formula  here:

https://brainly.com/question/30100288

#SPJ11

what percentage of the measurements are less than 30? (c) what percentage of the measurements are between 30.0 and 49.99 inclusive? (d) what percentage of the measurements are greater than 34.99? (e) how many of the measurements are greater than 40? (f) describe these data with respect to symmetry/skewness and kurtosis. (g) find the mean, median, variance, standard deviation and coefficient of variation of the bmi data. show equations and steps.

Answers

(c) The percentage of measurements less than 30 can be calculated by dividing the number of measurements less than 30 by the total number of measurements and multiplying by 100.

(d) The percentage of measurements between 30.0 and 49.99 inclusive can be calculated by dividing the number of measurements in that range by the total number of measurements and multiplying by 100.

(e) The number of measurements greater than 40 can be counted.

(f) The symmetry/skewness and kurtosis of the data can be determined using statistical measures such as skewness and kurtosis.

(g) The mean, median, variance, standard deviation, and coefficient of variation of the BMI data can be calculated using appropriate formulas.

(c) To find the percentage of measurements less than 30, divide the number of measurements less than 30 by the total number of measurements and multiply by 100. For example, if there are 50 measurements less than 30 out of a total of 200 measurements, the percentage would be (50/200) * 100 = 25%.

(d) To find the percentage of measurements between 30.0 and 49.99 inclusive, count the number of measurements falling within that range and divide by the total number of measurements, then multiply by 100. If there are 80 measurements in that range out of a total of 200, the percentage would be (80/200) * 100 = 40%.

(e) To determine the number of measurements greater than 40, count the occurrences of measurements that are larger than 40.

(f) The symmetry/skewness and kurtosis of the data can be analyzed using statistical measures. Skewness measures the asymmetry of the data distribution, with positive skewness indicating a right-skewed distribution and negative skewness indicating a left-skewed distribution. Kurtosis measures the degree of peakedness or flatness in the distribution, with higher values indicating more peakedness and lower values indicating more flatness.

(g) The mean, median, variance, standard deviation, and coefficient of variation of the BMI data can be calculated using appropriate formulas. The mean is the average of the data, the median is the middle value when the data is arranged in ascending or descending order, the variance measures the spread of the data from the mean, the standard deviation is the square root of the variance, and the coefficient of variation is the ratio of the standard deviation to the mean, expressed as a percentage. The formulas and steps to calculate these statistical measures depend on the specific data set and are typically performed using statistical software or spreadsheets.

Learn more about percentage here:

https://brainly.com/question/16797504

#SPJ11

See if you can use the pattern of common differences to find the requested term of each sequence without finding all the terms in-between. 1. Find the 14th term in this sequence: 1,3,5,7,9.... 2. Find

Answers

The 14th term in the sequence 1, 3, 5, 7, 9... is 27.

To find the 14th term in the sequence 1, 3, 5, 7, 9..., we can observe that each term increases by a common difference of 2. Starting from 1, we add 2 repeatedly to find subsequent terms: 1 + 2 = 3, 3 + 2 = 5, 5 + 2 = 7, and so on. Since the first term is 1 and the common difference is 2, we can find the 14th term by using the formula: nth term = first term + (n - 1) * common difference. Plugging in the values, we get the 14th term as: 1 + (14 - 1) * 2 = 1 + 26 = 27.

For more information on sequences visit: brainly.com/question/24584213

#SPJ11

suppose the number of students that miss a weekly quiz given by x has the following discrete distribution: x 0 1 5 10 p(x) 0.5 0.3 0.1 0.1 (a) [2 points] find the probability that no students miss the weekly quiz. (b) [2 points] find the probability that exactly 1 student miss the weekly quiz. (c) [2 points] find the probability that exactly 10 students miss the weekly quiz.

Answers

Therefore, the probability that exactly 10 students miss the weekly quiz is 0.1 or 10%.

(a) To find the probability that no students miss the weekly quiz, we look at the probability when x = 0.

P(X = 0) = 0.5

Therefore, the probability that no students miss the weekly quiz is 0.5 or 50%.

(b) To find the probability that exactly 1 student misses the weekly quiz, we look at the probability when x = 1.

P(X = 1) = 0.3

Therefore, the probability that exactly 1 student misses the weekly quiz is 0.3 or 30%.

(c) To find the probability that exactly 10 students miss the weekly quiz, we look at the probability when x = 10.

P(X = 10) = 0.1

To know more about probability,

https://brainly.com/question/14989346

#SPJ11

y+ 4y + 3y = e-t, y(0) = -1, y'(0) = 2 QUESTION 3. Use the Laplace transform to solve the following initial value problems. 2 a) y' + 54' – by = 0, y(0) = -1, y'(0) = 3 =

Answers

The final solution to the given initial value problem is y(t) = 3 * e^(bt - 5t). The Laplace transform can be used to solve initial value problems, transforming the differential equation into an algebraic equation. For the given initial value problem y' + 5y - by = 0, y(0) = -1, y'(0) = 3, the ultimate solution obtained through the Laplace transform is y(t) = (-1 + e^(-5t))/(1 + b).

To solve the given initial value problem using the Laplace transform, we first take the Laplace transform of the differential equation. Let Y(s) represent the Laplace transform of y(t), and Y'(s) represent the Laplace transform of y'(t). Applying the Laplace transform to the differential equation, we get:

sY(s) - y(0) + 5Y(s) - y'(0) - bY(s) = 0

Substituting the initial conditions y(0) = -1 and y'(0) = 3, we have:

sY(s) + 5Y(s) - 3 - bY(s) = 0

Combining like terms, we get:

Y(s)(s + 5 - b) = 3

Solving for Y(s), we have:

Y(s) = 3 / (s + 5 - b)

To find the inverse Laplace transform of Y(s), we need to use the partial fraction decomposition. Assuming that b ≠ s + 5, we can write:

Y(s) = A / (s + 5 - b)

Multiplying both sides by (s + 5 - b), we get:

3 = A

Therefore, A = 3. Now, taking the inverse Laplace transform of Y(s), we obtain:

y(t) = L^(-1)[Y(s)]

     = L^(-1)[3 / (s + 5 - b)]

     = 3 * e^(bt - 5t)

Thus, the final solution to the given initial value problem is y(t) = 3 * e^(bt - 5t).

Learn more about Laplace transform here:

brainly.com/question/30759963

#SPJ11


please help me
Question 7 < > The function f(x) = (7x - 2)e3+ has one critical number. Find it. Check Answer

Answers

The critical number of the function [tex]\(f(x) = (7x - 2)e^{3x}\) is \(x = -\frac{1}{21}\).[/tex]

To find the critical number of the function [tex]\(f(x) = (7x - 2)e^{3x}\)[/tex], we need to find the value of x where the derivative of f(x) is equal to zero or undefined.

First, let's find the derivative f(x) with respect to x. We can use the product rule and the chain rule for this:

[tex]\[f'(x) = (7x - 2)(3e^{3x}) + e^{3x}(7)\][/tex]

Simplifying this expression, we get:

[tex]\[f'(x) = 21xe^{3x} - 6e^{3x} + 7e^{3x}\][/tex]

Now, we set [tex]\(f'(x)\)[/tex]) equal to zero and solve for x:

[tex]\[21xe^{3x} - 6e^{3x} + 7e^{3x} = 0\][/tex]

Combining like terms, we have:

[tex]\[21xe^{3x} + e^{3x} = 0\][/tex]

Factoring out [tex]\(e^{3x}\)[/tex], we get:

[tex]\[e^{3x}(21x + 1) = 0\][/tex]

To find the critical number, we need to solve the equation [tex]\(21x + 1 = 0\).[/tex]Subtracting 1 from both sides:

[tex]\[21x = -1\][/tex]

Dividing by 21:

[tex]\[x = -\frac{1}{21}\][/tex]

Therefore, the critical number of the function [tex]\(f(x) = (7x - 2)e^{3x}\) is \(x = -\frac{1}{21}\).[/tex]

To learn more about critical points from the given link

https://brainly.com/question/30459381

#SPJ4

[10] (2) Evaluate the definite integral: SHOW METHOD & WORK ('x (2+3x)-³ dx HINT: Use the method of u-substitution.

Answers

To evaluate the definite integral ∫[x(2+3x)-³]dx using the method of u-substitution, we first substitute u = 2 + 3x and find du/dx = 3.

Rearranging the equation, we obtain dx = du/3. Substituting these expressions into the integral and simplifying, we obtain the integral ∫[(1/3)u⁻³]du. Integrating this expression yields the antiderivative (-1/6)u⁻². Finally, we substitute back u = 2 + 3x into the antiderivative and evaluate the definite integral over the given bounds.

To evaluate the definite integral ∫[x(2+3x)-³]dx using u-substitution, we start by letting u = 2 + 3x. The differential of u with respect to x can be found using the chain rule as du/dx = 3.

Rearranging the equation, we have dx = du/3.

Next, we substitute the expressions for u and dx into the original integral. The integral becomes ∫[(x(2+3x)-³)(du/3)]. Simplifying this expression, we get (1/3)∫[u⁻³]du.

We can now integrate the expression (1/3)u⁻³ with respect to u. The antiderivative of u⁻³ is (-1/6)u⁻² + C, where C is the constant of integration.

To find the definite integral, we substitute back u = 2 + 3x into the antiderivative. This gives us (-1/6)(2 + 3x)⁻² as the antiderivative of x(2+3x)-³.

Finally, we evaluate the definite integral by plugging in the upper and lower bounds of integration. Let's assume the bounds are a and b. The value of the definite integral is ∫a to bdx = (-1/6)(2 + 3b)⁻² - (-1/6)(2 + 3a)⁻².

In conclusion, the definite integral of x(2+3x)-³ using the method of u-substitution is (-1/6)(2 + 3b)⁻² - (-1/6)(2 + 3a)⁻².

Learn more about definite integral :

https://brainly.com/question/30760284

#SPJ11

Question 2 Let L be the line parallel to the line x+1 y = % 3 -2 and containing the point (2, -5, 1). Determine whether the following points lie on line L. 1. (-1, 0, 2) no 2. (-1, -7,0) no 3. (8,9,3)

Answers

(-1, 0, 2) does not lie on line L.

(-1, -7, 0) does not lie on line L.

(8, 9, 3) does not lie on line L.

To determine whether the given points lie on the line L, we need to find the equation of line L first.

The line L is parallel to the line with equation x + y = 3 - 2. To find the direction vector of the parallel line, we can take the coefficients of x and y in the given line equation, which are 1 and 1 respectively.

So, the direction vector of line L is d = (1, 1, 0).

Now, let's find the equation of line L using the direction vector and the given point (2, -5, 1).

The parametric equations of a line can be written as:

x = x0 + ad

y = y0 + bd

z = z0 + cd

where (x0, y0, z0) is a point on the line and (a, b, c) is the direction vector.

Substituting the values x0 = 2, y0 = -5, z0 = 1, and the direction vector d = (1, 1, 0) into the parametric equations, we get:

x = 2 + t(1)

y = -5 + t(1)

z = 1 + t(0)

Simplifying these equations, we have:

x = 2 + t

y = -5 + t

z = 1

So, the equation of line L is:

L: (x, y, z) = (2 + t, -5 + t, 1), where t is a parameter.

Now, let's check whether the given points lie on line L:

(-1, 0, 2):

Substituting the values x = -1, y = 0, z = 2 into the equation of line L, we get:

-1 = 2 + t

0 = -5 + t

2 = 1

The first equation is not satisfied, so (-1, 0, 2) does not lie on line L.

(-1, -7, 0):

Substituting the values x = -1, y = -7, z = 0 into the equation of line L, we get:

-1 = 2 + t

-7 = -5 + t

0 = 1

None of the equations are satisfied, so (-1, -7, 0) does not lie on line L.

(8, 9, 3):

Substituting the values x = 8, y = 9, z = 3 into the equation of line L, we get:

8 = 2 + t

9 = -5 + t

3 = 1

The first equation is satisfied (t = 6), and the second and third equations are not satisfied. Therefore, (8, 9, 3) does not lie on line L.

To learn more about direction vector visit : https://brainly.com/question/3184914

#SPJ11

use the number line to help you find which fraction is less than 0.5.

Answers

Any fraction that falls to the left of 1/2 on the number line is considered to be less than 0.5.

On the number line, fractions are represented as points between 0 and 1. The fraction 1/2 represents the halfway point on the number line.

Fractions to the left of 1/2 are smaller or less than 0.5.

The fraction 1/4 is to the left of 1/2, so it is less than 0.5.

This means that if you were to convert 1/4 into a decimal, it would be a number smaller than 0.5.

Similarly, the fraction 3/8 is also to the left of 1/2, so it is less than 0.5. When you convert 3/8 to a decimal, it is equal to 0.375, which is less than 0.5.

To learn more on Fractions click:

https://brainly.com/question/10354322

#SPJ1

A company handles an apartment building with 70 units. Experience has shown that if the rent for each of the units is $1080 per month, all the units will be filled, but 1 unit will become vacant for each $20 increase in the monthly rate. What rent should be charged to maximize the total revenue from the building if the upper limit on the rent is $1300 per month? - 2. If the total revenue function for a computer is R(x) 2000x – 20x’ – x', find the level of sales, x, that " maximizes revenue and find the maximum revenue in dollars. A firm has total revenues given by R(x) = 2800x – 8x² – x3 dollars

Answers

To determine the rent that maximizes the total revenue from the building, we can express the relationship between the rent and the number of occupied units. By setting up equations based on the given information. Answer :  Revenue = R * (70 - R/20 + 54).

we can derive a revenue function. Taking the derivative of this function and finding its critical points will help us identify the rent that maximizes the revenue.

1. Let R be the rent per unit and V be the number of vacant units. Using the information provided, we can express V = (R - 1080) / 20.

2. The number of occupied units, O, can be obtained as O = 70 - V.

3. The total revenue is given by Revenue = R * O.

4. Substituting the expressions for V and O into the revenue equation, we obtain Revenue = R * (70 - R/20 + 54).

5. Taking the derivative of the revenue function with respect to R, setting it equal to zero, and solving for R will give us the rent that maximizes the revenue.

2) The total revenue function for a computer is R(x) = 2800x - 8x^2 - x^3, where x represents the level of sales. To find the level of sales, x, that maximizes the revenue, we need to find the critical points of the revenue function by taking its derivative and setting it equal to zero. Solving this equation will give us the values of x that maximize the revenue. Substituting these values back into the revenue function will help us find the maximum revenue.

1. Calculate the derivative of the revenue function R(x) = 2800x - 8x^2 - x^3, which is R'(x) = 2800 - 16x - 3x^2.

2. Set R'(x) equal to zero: 2800 - 16x - 3x^2 = 0.

3. Solve the quadratic equation 3x^2 + 16x - 2800 = 0 either by factoring or using the quadratic formula.

4. Find the values of x that satisfy the equation and represent the critical points.

5. Evaluate the revenue function R(x) at these critical points to find the maximum revenue.

6. The level of sales, x, that maximizes the revenue is determined by the critical points, and the maximum revenue is obtained by substituting this value back into the revenue function.

Learn more about  revenue  : brainly.com/question/27325673

#SPJ11

11. [-15 Points) DETAILS MY NOTES Lets and sn be respectively the sum and the oth partial sum of the series (-1) 64 The smallest number of terms a such that s - |< 0.001 is equal to 39 41 37 40 42 Sub

Answers

The smallest number of terms [tex]\(n\)[/tex] such that [tex]\(\left|s - s_n\right| < 0.001\)[/tex] is equal to 40.

To find the smallest number of terms [tex]\(n\)[/tex] that satisfies [tex]\(\left|s - s_n\right| < 0.001\)[/tex], we need to calculate the partial sum [tex]\(s_n\)[/tex] for different values of [tex]\(n\)[/tex] until the condition is met.

We are given the series [tex]\(\sum_{n=1}^{\infty}\frac{{(-1)}^n64}{n^3}\)[/tex]. Let's calculate the partial sums:

[tex]\(s_1 = \frac{{(-1)}^164}{1^3} = -64\)[/tex],

[tex]\(s_2 = \frac{{(-1)}^164}{1^3} + \frac{{(-1)}^264}{2^3} = -64 + 16 = -48\)[/tex],

[tex]\(s_3 = \frac{{(-1)}^164}{1^3} + \frac{{(-1)}^264}{2^3} + \frac{{(-1)}^364}{3^3} = -64 + 16 - \frac{64}{27}\)[/tex],

and so on.

We continue calculating the partial sums until we find a value of [tex]\(n\)[/tex] for which [tex]\(\left|s - s_n\right| < 0.001\)[/tex]. We notice that when [tex]\(n = 40\)[/tex], the partial sum [tex]\(s_{40}\)[/tex] is very close to the sum [tex]\(s\)[/tex]. Therefore, the smallest number of terms [tex]\(n\)[/tex] that satisfies the condition is 40.

Hence, the answer is (d) 40.

The complete question must be:

Let [tex]\ s[/tex] and [tex]\ s_n[/tex] be respectively the sum and the [tex]\ n^{th}[/tex] partial sum of the series[tex]\sum_{n=1}^{\infty}\frac{{(-1)}^n64}{n^3}[/tex]. The smallest number of terms n such that [tex]\left|s-s_n\right|[/tex] <0.001 is equal to

a.39

b.41

c.37

d.40

e.42

Learn more about series:

https://brainly.com/question/30457228

#SPJ11








a particle that starts from the origin, moves along a straight line so that its speed at "t" is y=2sin(t)+3t^2. Determine the position of the particle at t= 1 *note: do not integrate the function to o

Answers

To determine the position of a particle at t = 1, given its speed function y = 2sin(t) + 3t^2, we need to find the position function by integrating the speed function with respect to time. Then, we substitute t = 1 into the position function to obtain the particle's position at that specific time.

To find the position function, we integrate the speed function y = 2sin(t) + 3t^2 with respect to time. The integral of sin(t) is -2cos(t), and the integral of t^2 is t^3/3. So, the position function can be expressed as x = -2cos(t) + t^3/3 + C, where C is the constant of integration.

To determine the value of the constant C, we can use the initial condition that the particle starts from the origin (x = 0) when t = 0. Substituting these values into the position function, we have 0 = -2cos(0) + (0)^3/3 + C. Simplifying this equation, we find C = 2.

Thus, the position function becomes x = -2cos(t) + t^3/3 + 2.

To find the position of the particle at t = 1, we substitute t = 1 into the position function:

x = -2cos(1) + (1)^3/3 + 2.

Evaluating this expression will give us the position of the particle at t = 1.

Learn more about function here:

https://brainly.com/question/30721594

#SPJ11

Other Questions
Someone who is motivated by the desire to increase another's welfare is specifically said to be showing ________ behavior.a. sympatheticb. empathicc. egoisticd. altruistic Identify the correct pronunciation for the term decubitus ulcer.A. deh-KYOO-bih-tus UL-sirB. deh-SOO-bih-tus UL-sirC. deh-KYOO-bih-tus UL-kerD. deh-SOO-bih-tus UL-ker solve the system dxdt= [ 15 -18 ] 12 -15 x with the initial value x(0)= [ -10 ] -8 . x(t)= [ ] . How does the ceiling on the pay to student-athletes impact competitive balance in college sports? "Find the change in cost for the given marginal. Assume that the number of units x increases by 3 from the specified value of x. (Round your answer to twe decimal places.) Marginal Number of Units, dc/dx = 22000/x2 x= 12 " 100 POINTS AND BRAINLIST!QuestionWhy does the sun appear so much larger and brighter than the other stars that are seen from Earth?ResponsesThe sun is much larger than other stars. [A]The sun appears only during the daytime. [B]The sun is closer to Earth than other stars. [C] The sun burns more brightly than other stars. [D] please answer quicklySolve the initial value problem for r as a vector function of t Differential equation: -=-18k dr Initial conditions: r(0)=30k and = 6i +6j dtt-0 (=i+Di+k introduction to mass communication media literacy and culture pls answer this question, I don't understand it. in class, we learned about the role of organizer regions in pattern formation. which of the following is an example of an organizer region?a) in spemann and mangold (1924), th transplanted dorsal lip caused the formation of dorsal featres (including the neural tube) on the ventral side of gastrulab) the apical epidermal ridge secrets protein signals to establish limbs from shoulder to fingertipc) hormones can transmit long-distance signals such that multiple developmental events can occur simultaneously.d) the zone of polarizing, activity establish the anterior-posterior axis in chickens 100 Points! Geometry question. Photo attached. Find the area of the figure. Round to the nearest tenth if necessary. Please show as much work as possible. Thank you! Indicate which is the best translation for each sentence or question.1) Juan hablaba con su hermana.a. Juan spoke with his sister.b. Juan was speaking with his sister.c. Juan will speak with his sister. Which of the following statements about pyroclastic flows is TRUE?A. They are slow-moving, but because of their high temperature they are quite deadly.B. They are comprised of water-saturated volcanic debris that builds up from repeated eruptions.C. They consist of hot gasses infused with ash and lava fragments and move at extremely high speed.D. They commonly occur as part of basaltic volcanism at midocean ridges. What is assigned to the variable result given the statement below with the following assumptions: x = 10, y = 7, and x, result, and y are all int variables. result = x > y; 10 x > Y 7 0 1 6. (-/2 Points] DETAILS LARCALC11 13.3.021. Find both first partial derivatives. az ax = az = ay Need Help? Read It Watch It hich of the following led most directly to the development of the trading network on the map? responses the growth of trading cities on the swahili coast the growth of trading cities on the swahili coast innovations in transportation and commercial technologies such as caravanserai innovations in transportation and commercial technologies such as caravanserai the overall decline in the trade of goods along the silk roads the overall decline in the trade of goods along the silk roads the emergence of the trans-atlantic slave trade in west africa a crystalline ceramic has the chemical formula ab3. what is a possible crystal structure for this ceramic? the conventional wisdom that the more practice a person has, the better his or her performance will be in some future situation is group of answer choices A. none of the choices B. seldom the best approach C. not always the best approach D. always the best approach brenda made the heliocentric model shown below to represent the sun, universe, mercury, and solar system. what does the symbol for d in brenda's diagram most likely represent? sun universe mercury Evaluate [C (x + y +2) ds, where y is the helix x = cost, y = sin t, z=t(0 t T). 57. Evaluate fyzd yzdx + azdy + xydz over the line segment from (1, 1, 1) to (3,2,0). 58. Let C be the line segment from point (0, 1, 1) to point (2, 2, 3). Evaluate line integral yds.