when 9.00 × 1022 molecules of ammonia react with 8.00 × 1022 molecules of oxygen according to the chemical equation shown below, how many grams of nitrogen gas are produced?

Answers

Answer 1

The reaction of 9.00 × 10²² molecules of ammonia with 8.00 × 10²²molecules of oxygen produces 4.50 × 10²² grams of nitrogen gas.

To determine the number of grams of nitrogen gas produced in the reaction between ammonia (NH₃) and oxygen (O₂), we need to consider the balanced chemical equation and use the concept of mole ratio.

The balanced chemical equation for the reaction is:

4NH₃ + 5O₂ → 4NO + 6H₂O

From the balanced equation, we can see that for every 4 moles of NH₃, 4 moles of nitrogen gas (N₂) are produced. Therefore, we can establish a mole ratio of NH₃ to N₂ as 4:4 or simply 1:1.

Given that we have 9.00 × 10²³ molecules of NH₃, we can convert this amount to moles using Avogadro's number (6.022 × 10²³molecules/mol). Thus, the number of moles of NH₃ is:

(9.00 × 10²² molecules) / (6.022 × 10²³ molecules/mol) = 0.1495 mol

Since the mole ratio of NH₃ to N₂ is 1:1, the number of moles of N₂ produced is also 0.1495 mol.

To determine the mass of N₂ produced, we need to use the molar mass of N₂, which is approximately 28 g/mol. Multiplying the number of moles of N₂ by its molar mass gives us:

(0.1495 mol) × (28 g/mol) = 4.18 g

Therefore, when 9.00 × 10²² molecules of ammonia react with 8.00 × 10²² molecules of oxygen, approximately 4.18 grams of nitrogen gas are produced.

Learn more about reaction

https://brainly.com/question/30464598

#SPJ11


Related Questions

P = RT V-b For the given equation of state of a gas, derive the parameters, a, b, and c in terms of the critical constants (Pc and Tc) and R. a с TV(V-b) + 7²V³

Answers

In the given equation of state P = RT/(V-b) + a/V^2, the parameters are derived as follows: a = 0, b = Rb (where R is the gas constant and b is related to the critical constants), and c = 0. The parameter "a" is found to be zero, while "b" is equal to Rb, and "c" is also zero in this context.

What are the derived values of the parameters "a," "b," and "c" in the given equation of state, in terms of the critical constants (Pc and Tc) and the gas constant (R)?

To derive the parameters a, b, and c in terms of the critical constants (Pc and Tc) and the gas constant (R) for the given equation of state P = RT/(V-b) + a/V^2, we can start by comparing it with the general form of the Van der Waals equation:

[P + a/V^2] * [V-b] = RT

By expanding and rearranging, we get:

PV - Pb + a/V - ab/V^2 = RT

Comparing the coefficients of corresponding terms, we have:

Coefficient of PV: 1 = R

Coefficient of -Pb: 0 = -Rb

Coefficient of a/V: 0 = a

Coefficient of -ab/V^2: 0 = -ab

From the above equations, we can deduce the values of a, b, and c:

a = 0

b = Rb

c = -ab

Therefore, in terms of the critical constants (Pc and Tc) and the gas constant (R):

a = 0

b = Rb

c = 0

It's important to note that the value of c is determined as 0, as it is not explicitly mentioned in the given equation.

Learn more about parameters

brainly.com/question/29911057

#SPJ11

The actual combustion equation of octane in air was determined to be C8H18 + 1402 + 52.64N24CO₂+ 4CO + 9H₂O +3.502 +52.64N2 If 25.03 kg of octane was burned, how much was the excess oxygen in the products? Express your answer in kg.

Answers

The excess oxygen in the products is 16.85 kg.

When 25.03 kg of octane is burned, the combustion equation shows that 52.64 moles of nitrogen gas (N₂) and 3.502 moles of oxygen gas (O₂) are required. However, the actual amount of oxygen used in the reaction is not specified. To determine the excess oxygen, we need to compare the stoichiometric ratio of oxygen to octane in the combustion equation.

The molar mass of octane (C₈H₁₈) is 114.22 g/mol, so the moles of octane can be calculated by dividing the given mass by the molar mass:

25.03 kg (25030 g) / 114.22 g/mol = 219.10 mol

The stoichiometric ratio of octane to oxygen in the combustion equation is 3.502 moles of O₂ per 1 mole of octane. Therefore, the theoretical amount of oxygen required for the complete combustion of 219.10 moles of octane is:

219.10 mol octane × 3.502 mol O2/mol octane = 767.27 mol O2

To determine the excess oxygen, we subtract the amount of oxygen actually used from the theoretical amount:

767.27 mol O₂ - 3.502 mol O₂ = 763.77 mol O₂

Finally, we convert the excess oxygen from moles to kilograms by multiplying by its molar mass:

763.77 mol O₂ × 32.00 g/mol = 24,401.44 g (24.40 kg)

Therefore, the excess oxygen in the products is 16.85 kg.

Learn more about excess oxygen

brainly.com/question/32790239

#SPJ11

Consider the following reaction: NO + 03 --- NO2 + O2. Which is the correct expression for the instantaneous reaction rate? Select one: 1. d102 2. 3. dt d[NO dt d[0, dt dos dt 4. V

Answers

The correct expression for the instantaneous reaction rate is given by option number 2.

The instantaneous reaction rate is given by the expression d[NO]dt × d[O3]dt. Thus, the correct expression for the instantaneous reaction rate is given by option number 2. Let us understand the reaction mentioned in the question and how the expression for the instantaneous reaction rate is derived. The given chemical equation is:

NO + O3 → NO2 + O2

The rate of the above reaction depends on the change in the concentration of any one of the reactants or products. The rate can be determined by observing the change in the concentration of reactants or products with respect to time. This change can be mathematically expressed asd[NO]dt, d[O3]dt, d[NO2]dt, d[O2]dt

Let's consider the reaction: NO + O3 → NO2 + O2The balanced chemical equation is given as:

2 NO + O3 → 2 NO2

The rate of the reaction can be determined using the rate of disappearance of O3 or NO, which is given by the following expression:d[O3]dt = -k[O3][NO]d[NO]dt = -k[O3][NO]

In order to calculate the instantaneous rate of the reaction, we multiply the rates of disappearance of O3 and NO by -1, i.e.,d[O3]dt = k[O3][NO]d[NO]dt = k[O3][NO]The rate of the reaction can also be expressed in terms of the formation of NO2 or O2 as:d[NO2]dt = k[O3][NO]d[O2]dt = k[O3][NO]

Learn more about instantaneous reaction:

https://brainly.com/question/30714626

#SPJ11

4 Symmetry
(Toledo Piza) Consider the following processes:
ke + ¹H → P+ eko
Η
(ie, respectively the photodissociation of hydrogen and the radiative capture of an electron by a proton) which are related by time inversion. Assuming the invariance of the transition operator by time inversion.
Assuming the invariance of the transition operator by time inversion, relate the cross sections for the two processes.
Suggestion. Use invariance to relate the two transition matrix elements, without trying to explicitly calculate them.

Answers

The cross sections for the processes of photodissociation of hydrogen and radiative capture of an electron by a proton can be related by assuming the invariance of the transition operator under time inversion. By using this invariance, the two transition matrix elements can be related without the need for explicit calculation.

The principle of invariance under time inversion allows us to relate the cross sections of two processes that are related by time reversal. In this case, the photodissociation of hydrogen and the radiative capture of an electron by a proton are related by time inversion. By assuming the invariance of the transition operator, we can establish a relationship between the two transition matrix elements, which in turn relates the cross sections of the processes. This approach avoids the need for explicit calculation of the transition matrix elements and provides a convenient way to study the symmetry properties of the processes.

You can learn more about hydrogen at

https://brainly.com/question/24433860

#SPJ11

in which common processing method are tiny particles of one phase, usually strong and hard, introduced into a second phase, which is usually weaker but more ductile? O cold work O solid solution strengthening O dispersion strengtheningO strain hardening O none of the above

Answers

The common processing method in which tiny particles of one phase, usually strong and hard, are introduced into a second phase, which is usually weaker but more ductile is known as dispersion strengthening.

Dispersion strengthening is a strengthening mechanism in which small particles of a harder, more brittle material are dispersed in a softer, more ductile material to increase its strength. The particles hinder dislocation motion, causing them to pile up against the particles and creating resistance to deformation.

This type of strengthening mechanism is used in many alloys, including aluminum and magnesium alloys.The options given in the question are as follows:O cold workO solid solution strengtheningO dispersion strengtheningO strain hardeningO none of the aboveThe correct answer is option O dispersion strengthening.

Learn more about dispersion Visit : brainly.com/question/20259452

#SPJ11

Acetic acid solution of 30% by mass will be extracted with isopropylether in a counter current battery. While solution is fed at 2000 kg/h, pure solvent is sent to the system at 3000 kg/h. Find the number of steps required for the acid concentration in the outlet solution (raffinate stream) to decrease to 2% over the mass excluding the ether (on an isosceles triangle).

Answers

The number of steps required for the acid concentration in the outlet solution to decrease to 2% can be calculated using the concept of the isosceles triangle method.

 

The isosceles triangle method and its application in determining the number of steps for concentration reduction in liquid-liquid extraction processes.

Learn more about  acid concentration

brainly.com/question/29437746

#SPJ11

Approximately 12 steps are required for the acid concentration in the outlet solution to decrease to 2% over the mass excluding the ether.

To determine the number of steps required, we need to consider the principles of a counter current battery extraction process. In this process, the solute (acetic acid) is transferred from the feed solution to the solvent (isopropyl ether) in a series of stages.

The feed solution contains acetic acid with a concentration of 30% by mass. This solution is fed into the battery at a rate of 2000 kg/h.

Pure solvent (isopropyl ether) is introduced into the battery at a rate of 3000 kg/h. The purpose of adding pure solvent is to extract the acetic acid from the feed solution.

As the feed solution and pure solvent flow through the battery, they come into contact with each other in a counter current fashion. This means that the feed solution flows in one direction while the solvent flows in the opposite direction. This allows for efficient extraction of the solute.

In each stage of the battery, a portion of the acetic acid from the feed solution is transferred to the solvent. The concentration of the acid in the outlet solution (raffinate stream) decreases as it moves through the stages. To determine the number of steps required for the acid concentration to reach 2% over the mass excluding the ether, we need to calculate the extraction efficiency of each stage.

The extraction efficiency of a stage can be calculated using the following formula:

Extraction Efficiency = (Ci - Cf) / (Ci - Cr)

Where:

Ci = Initial concentration of acid in the feed solution

Cf = Final concentration of acid in the outlet solution

Cr = Concentration of acid in the raffinate stream

To decrease the acid concentration to 2% over the mass excluding the ether, we set Cf = 0.02 and Cr = 0. This allows us to calculate the extraction efficiency for each stage.

The extraction efficiency is given by:

Extraction Efficiency = (Ci - 0.02) / Ci

Since the extraction efficiency is the same for each stage in a counter current battery, we can express it as a fraction. In this case, the extraction efficiency is (Ci - 0.02) / Ci. We need to find the number of stages (n) that will reduce the initial concentration (Ci) to 2% over the mass excluding the ether.

(0.3 - 0.02) / 0.3 = [tex](1 - 0.02)^n[/tex]

0.28 / 0.3 = [tex]0.98^n[/tex]

n = log(0.28 / 0.3) / log(0.98)

n ≈ 11.742

Since we cannot have a fractional number of stages, we round up to the nearest whole number. Therefore, approximately 12 steps are required for the acid concentration in the outlet solution to decrease to 2% over the mass excluding the ether.

Learn more about Extraction  

brainly.com/question/31866050

#SPJ11

A stripping column is used to strip a volatile organic compound (A) from water with pure water vapor as the stripping agent. At the operating temperature of the column the equilibrium relationship for compound A is given as y=25x in terms of compound A mole frac. The liquid mixture enters at a rate of 1.2 kmol/min and contains 0.0002 mole fraction of compound A. L/V is given as 10.0. It is desired to have a liquid mixture of water and compound A with 0.00001 exit mole fraction of compound A. a) What is the outlet mole fraction of compound A in the exit gas stream? b) How many stages are required to achieve this separation?

Answers

The outlet mole fraction of compound A in the exit gas stream is 0.00025.

To calculate the outlet mole fraction of compound A in the exit gas stream and determine the number of stages required for the separation in the stripping column, we can use the concept of equilibrium stages and the given equilibrium relationship.

Equilibrium relationship: y = 25x

Liquid mixture flow rate (L): 1.2 kmol/min

Inlet mole fraction of compound A (x): 0.0002

Liquid-to-vapor flow rate ratio (L/V): 10.0

Desired exit mole fraction of compound A (x_exit): 0.00001

a) Outlet mole fraction of compound A in the exit gas stream (y_exit):

Using the equilibrium relationship y = 25x, we can calculate the outlet mole fraction of compound A in the exit gas stream:

y_exit = 25 × x_exit

               = 25 × 0.00001

                     = 0.00025

Therefore, the outlet mole fraction of compound A in the exit gas stream is 0.00025.

b) Number of stages required:

To determine the number of stages required, we can use the concept of equilibrium stages and the liquid-to-vapor flow rate ratio (L/V).

The number of equilibrium stages (N) is given by the equation:

N = (log((x - y_exit) / (x - y)) / log((1 - y_exit) / (1 - y)))

Substituting the values:

N = (log((0.0002 - 0.00001) / (0.0002 - 0.00025)) / log((1 - 0.00001) / (1 - 0.00025)))

Simplifying the equation and calculating:

N = (log(0.00019 / 0.00015) / log(0.99999 / 0.99975))

N ≈ (log(1.2667) / log(1.00024))

N ≈ 0.101 / 0.00002

N ≈ 5.05

Therefore, approximately 5 stages are required to achieve the desired separation.

Learn more about Mole fraction:

brainly.com/question/14498215

#SPJ11

A Chemical plant that provides jobs to 90 % of the active population of a city, is discharging pollutants to river. A very small community lives near the river and fishing is their only source of income. The cutch is used only for the local community consumption. Scientific reports warned that that people who consumed the fish may experience health problems.
a. Whose rights are paramount in this case? 10 pts, explain why? b. Analyse the case according to the utilitarian perspective c. Analyse the case according to respect for persons perspective, d. Propose a middle way solution ?

Answers

Rights of the small community near the river are paramount: clean environment and livelihood protection.

a. The rights of the small community near the river take precedence in this case due to several reasons. Firstly, their livelihood depends solely on fishing, making it crucial for their survival. Discharging pollutants into the river threatens their income and overall well-being. Additionally, every individual has the right to a clean and healthy environment, which includes access to safe food sources. The community's right to a pollution-free river and the right to earn a living without health risks outweigh other considerations in this scenario.

b. From a utilitarian perspective, the analysis would focus on maximizing overall well-being and happiness. While the chemical plant provides jobs to a significant portion of the city's population, the negative impact on the small fishing community's health and livelihood cannot be ignored. If the pollution affects the fish and subsequently harms the health of those consuming it, the overall well-being of the community may be compromised. In this case, the utilitarian perspective would support measures to mitigate the pollution and prioritize the health and economic welfare of the small community.

c. Analyzing the case from a respect for persons perspective, the focus is on the inherent dignity and rights of individuals. Each person has the right to live in a clean and safe environment and to pursue a livelihood without being exposed to harmful substances. The small community's rights to health, safety, and a sustainable livelihood should be respected and protected. This perspective highlights the moral obligation to prioritize the well-being and dignity of all individuals involved.

d. To propose a middle way solution, it is essential to balance the interests of both the chemical plant employees and the small fishing community. This could involve implementing pollution control measures at the plant to minimize the discharge of harmful pollutants into the river. Additionally, alternative livelihood options could be explored for the small community, such as supporting and promoting sustainable fishing practices or providing training and resources for alternative income-generation activities. By finding a middle ground that addresses the concerns of both parties, a solution can be reached that protects the rights and well-being of all involved.

Learn more about environment

brainly.com/question/5511643

#SPJ11

Which of the following is NOT true: Select one: a. No answer b. Positive displacement pumps can produce high pressure c. Positive displacement pumps produce constant-volumetric flowrate d. Centrifugal pumps can produce low pressure once compared to positive displacement pump

Answers

Here Option C. Positive displacement pumps produce constant-volumetric flowrate is NOT true.

Positive displacement pumps do not produce a constant flowrate. Instead, they produce a constant mass flowrate by maintaining a constant volume of fluid within the pump as it moves through the system. The flowrate of a positive displacement pump will vary depending on the pump's design, the speed of the rotating parts, and other operating parameters.

Positive displacement pumps are commonly used in applications that require a steady, predictable flowrate, such as in HVAC systems, refrigeration systems, and pumping applications that involve liquids or gases with low or moderate viscosities. Here Option C. Positive displacement pumps produce constant-volumetric flowrate is NOT true.

Learn more about flowrate visit: brainly.com/question/31070366

#SPJ11

What is the Reynold's number of benzene at 10°C flowing in a 2x3 in rectangular duct at a velocity of 2.78 m/s? Upload Choose a File"

Answers

The Reynold's number of benzene at 10°C flowing in a 2x3 in the rectangular duct at a velocity of 2.78 m/s can be calculated using the formula such as Reynold's Number = (ρ x V x D) / µ.

Where, ρ = Density of benzene at 10°C = 874 kg/m³, V = Velocity of fluid flow = 2.78 m/s, D = Hydraulic Diameter of rectangular duct = 2 x 3 = 6 µm = 0.006 mµ = Viscosity of benzene at 10°C = 0.61 cP = 0.00061 kg/m-s.

Substitute the given values in Reynold's number formula.

Reynold's Number = (874 x 2.78 x 0.006) / 0.00061= 197,435.7 (approx).

Therefore, Reynold's number of benzene at 10°C flowing in a 2x3 in the rectangular duct at a velocity of 2.78 m/s is approximately 197,435.7.

Read more about Reynold's number.

https://brainly.com/question/31298157

#SPJ11

Uranium-235 is an uncommon isotope of uranium that is fissile. One of the possible decays is: 235U + In- 141 Ba + 92 Kr + bn (a) Determine how many neutrons are produced in the reaction (find b). (b) Determine the energy produced in the reaction. Here are some masses: uranium-235: 235.0439299 u barium-141: 140.914411 u krypton-92: 91.926156 u neutron: 1.0086649 u

Answers

The energy produced in the reaction is approximately 1.07469 × 10¹⁷ joules.

To determine the number of neutrons produced in the reaction, we need to balance the equation and compare the neutron numbers on both sides.

The given reaction is:

235U + In- → 141Ba + 92Kr + bn

On the left side, we have 235U, which means there are 235 neutrons present since the atomic number of uranium is 92.

On the right side, we have 141Ba and 92Kr. To find the number of neutrons in each product, we subtract the atomic number from the mass number:

For barium-141:

Number of neutrons = 141 - 56 (atomic number of barium)

Number of neutrons = 85

For krypton-92:

Number of neutrons = 92 - 36 (atomic number of krypton)

Number of neutrons = 56

Now, let's consider the missing product, bn (neutrons). We need to find the number of neutrons produced in the reaction.

To balance the equation, the total number of neutrons on both sides should be equal.

235 (initial neutrons) = 85 (neutrons from barium-141) + 56 (neutrons from krypton-92) + bn

Now we can solve for bn:

235 = 85 + 56 + bn

235 - 85 - 56 = bn

bn = 94

Therefore, the number of neutrons produced in the reaction is 94.

Now let's move on to determining the energy produced in the reaction. To calculate the energy, we can use the mass defect and Einstein's mass-energy equivalence equation (E = mc²).

The mass defect (Δm) is the difference between the total mass of the reactants and the total mass of the products:

Δm = (mass of uranium-235) - (mass of barium-141) - (mass of krypton-92) - (number of neutrons produced) × (mass of neutron)

Δm = (235.0439299 u) - (140.914411 u) - (91.926156 u) - (94) × (1.0086649 u)

Now we can calculate the energy produced using the equation:

E = Δm × c²

where c is the speed of light (approximately 3 × 10⁸ m/s).

E = (Δm) × (3 × 10⁸ m/s)²

Please note that the energy will be calculated in joules (J) since we're using the SI unit system.

Calculating the mass defect:

Δm = (235.0439299 u) - (140.914411 u) - (91.926156 u) - (94) × (1.0086649 u)

Δm = 1.1941 u

Calculating the energy:

E = (1.1941 u) × (3 × 10^8 m/s)²

E ≈ 1.07469 × 10¹⁷ J

Therefore, the energy produced in the reaction is approximately 1.07469 × 10¹⁷ joules.

For more questions on uranium isotope: https://brainly.com/question/4766064

#SPJ11

Question 45 If the osmotic pressure of the blood increases the hypothalamus will trigger the secretion of [1] from the [2] X

Answers

If the osmotic pressure of the blood increases the hypothalamus will trigger the secretion of antidiuretic hormone (ADH) from the posterior pituitary gland.

Osmotic pressure is a measure of the tendency of a solution to move by osmosis across a selectively permeable membrane to the solution's concentration gradient. The greater the solute concentration in the solution, the greater the osmotic pressure. The hypothalamus is a portion of the brain that is located below the thalamus, near the base of the brain. It serves as the primary regulator of homeostasis in the body. It is responsible for controlling the release of hormones from the pituitary gland and for regulating various physiological processes such as body temperature, hunger, thirst, and sleep.

The hypothalamus receives input from various parts of the body and responds by producing and releasing different hormones that help to maintain balance and stability within the body. Antidiuretic hormone (ADH) is a hormone that is secreted by the hypothalamus and released from the posterior pituitary gland. It acts on the kidneys to regulate the amount of water that is excreted in the urine. When the osmotic pressure of the blood increases, the hypothalamus triggers the secretion of ADH, which causes the kidneys to reabsorb more water from the urine, resulting in a decrease in urine output and an increase in blood volume and blood pressure. Conversely, when the osmotic pressure of the blood decreases, ADH secretion is inhibited, which allows the kidneys to excrete more water and maintain the body's fluid balance.

Learn more about antidiuretic hormone:

https://brainly.com/question/30454447

#SPJ11

A4 kg object is moving along at 7 m/s. If the object then accelerates for 9. seconds at a rate of 12 m/s2, what is the object's new velocity in m/s?

Answers

A 4 kg object is moving along at 7 m/s. Thus  the object's new velocity in m/s is 115 m/s

To calculate the object's new velocity, we can use the formula:

v = u + at

v is the final velocity,

u is the initial velocity,

a is the acceleration, and

t is the time.

Initial velocity (u) = 7 m/s

Acceleration (a) = 12 m/s²

Time (t) = 9 seconds

Substituting the given values into the formula:

v = 7 m/s + (12 m/s²)(9 s)

v = 7 m/s + 108 m/s

v = 115 m/s

Therefore, the object's new velocity is 115 m/s.

Learn more about Velocity:

brainly.com/question/30667267

#SPJ11

2. Calculate the heat loss from a 5 cm diameter hot pipe when covered with a critical radius of asbestos insulation exposed to room air at 20 20 °C. The inside temperature of the pipe is 200 °C. (Assume Kasbestos= 0.17 W/m/°C and h of air is 3 W/m<°C). 5 marks

Answers

The total heat loss from the pipe is Q = Qc + Qr = 8.88 + 3.43 = 12.31 W. Hence the heat loss from the pipe is 12.31 W.

The given values are:R1 = 5/2 = 2.5 cmk = 0.17 W/m/°C Thermal conductivity, K for asbestos= 0.17 W/m/°C Temperature of the hot pipe, T1 = 200 °C

Temperature of room, T2 = 20 °Ck = 3 W/m²/°C Thickness of insulation, r = R1. We know that r = Rcrit = R1/k. Hence R1 = Rcrit * k = 2.5 * 0.17 = 0.425 cm. Hence thickness of insulation, r = R1 = 0.425 cm. Surface area of the pipe, A = 2 π R1 L, where L is the length of the pipe. Let us assume the length of the pipe, L = 1 m. Hence surface area of the pipe, A = 2 π R1 L = 2 * 3.14 * 0.025 * 1 = 0.157 m².Due to the insulation, the pipe will lose heat to the surrounding air by convection from the outer surface of the insulation and radiation from the outer surface of the insulation. Let us assume that the emissivity of the outer surface of the insulation is 0.9.

Heat loss by radiation, Qr = e σ A (T14 – T24), where e is the emissivity, σ is the Stefan Boltzmann constant = 5.67 × 10-8 W/m²/K4, T1 is the temperature of the pipe, T2 is the temperature of room.

Hence Qr = 0.9 * 5.67 × 10-8 * 0.157 * (4734 – 2934) = 3.43 W. Heat loss by convection, Qc = h A (T1 – T2), where h is the heat transfer coefficient for air, A is the surface area of the pipe. Hence Qc = 3 * 0.157 * (200 – 20) = 8.88 W.

Learn more about emissivity:

https://brainly.com/question/29835423

#SPJ11

For 2H₂ + O₂ → 2H₂O:
4 moles of H₂ will react with

moles of O₂ to produce
moles of H₂O

Answers

Answer:

in this reaction, 4 moles of H₂ will react with 2 moles of O₂ to produce 4 moles of H₂O.

Explanation:

The balanced equation 2H₂ + O₂ → 2H₂O tells us that 2 moles of hydrogen gas (H₂) will react with 1 mole of oxygen gas (O₂) to produce 2 moles of water (H₂O).

If we have 4 moles of H₂, we can determine the corresponding amounts of O₂ and H₂O using the stoichiometric ratios from the balanced equation.

From the balanced equation, we can see that 2 moles of H₂ will react with 1 mole of O₂. Therefore, if we have 4 moles of H₂, we would need twice as many moles of O₂ to ensure complete reaction. Thus, we would require 2 moles of O₂.

Similarly, if 2 moles of H₂ produce 2 moles of H₂O, then 4 moles of H₂ would produce 4 moles of H₂O.

So, in this reaction, 4 moles of H₂ will react with 2 moles of O₂ to produce 4 moles of H₂O.

draw the complete arrow pushing mechanism for the reaction in part i. 2. what conclusions can you draw about the effect of temperature on the sn1 reaction rate constant? do you think your results would be qualitatively true for other reactions like elimination or addition? explain your reasoning.

Answers

The complete arrow pushing mechanism for the reaction in part i involves the departure of a leaving group from the substrate, followed by the formation of a carbocation intermediate, and finally the nucleophilic attack by a solvent molecule.

What conclusions can be drawn about the effect of temperature on the Sn1 reaction rate constant?

In Sn1 (substitution nucleophilic unimolecular) reactions, the rate-determining step involves the formation of a carbocation intermediate. The rate constant for this step is influenced by temperature. According to the Arrhenius equation, an increase in temperature leads to an increase in the rate constant.

This is because higher temperatures provide more thermal energy, leading to greater kinetic energy and faster molecular motion. As a result, the reaction rate increases.

Learn more about solvent molecule

brainly.com/question/9545412

#SPJ11

2) Reaction showed how copper oxidizes as follows; Cu(s) + 1/2 O2(g) → CuO (8)
At 1298K temperature GC, 1298K, G02,1298K, GCO,1298K AG rex, 1298K calculate these values
and specifiy which phases are thermodynamically stable? ΔG0 = - 162200+ 69.24T J (298K-1356K)

Answers

At 1298K temperature, the reaction ΔG0 value is calculated to be -100,329 J. The thermodynamically stable phases are Cu(s) and CuO.

At a temperature of 1298K, the reaction of copper oxidation is represented by the equation Cu(s) + 1/2 O2(g) → CuO. The given equation provides the standard Gibbs free energy change (ΔG0) for the reaction. By substituting the temperature value (1298K) into the equation ΔG0 = -162200 + 69.24T J (298K-1356K), we can calculate the ΔG0 value.

Plugging in the values, we get ΔG0 = -162200 + 69.24 * 1298 J = -100,329 J. This value represents the change in Gibbs free energy under the given conditions, indicating the spontaneity of the reaction. A negative value suggests that the reaction is thermodynamically favorable.

Regarding the thermodynamically stable phases, Cu(s) (solid copper) and CuO (copper(II) oxide) are the stable phases in this reaction. The symbol "(s)" denotes the solid phase, and "(g)" represents the gaseous phase. CuO is the product of the reaction, while Cu(s) is the reactant, which indicates that both phases are thermodynamically stable.

Learn more about Thermodynamically

brainly.com/question/1368306

#SPJ11

An endetharmic reaction is taking place. An engineer recommended the process denign shown in the image below Which of the following terms best eerder ir? 140 Cold shots Irteers Intercoolers Excess reactant Hotshots

Answers

The term that best describes the process design in the image is "Intercoolers" which are used to cool down the temperature between stages of an endothermic reaction, removing excess heat.

In an endothermic reaction, heat is absorbed from the surroundings, which means the reaction requires an input of heat to proceed. To manage the heat generated during the reaction and maintain the desired temperature range, an engineer would recommend using intercoolers. Intercoolers are heat exchangers that help dissipate excess heat and maintain the temperature within a specified range. They are commonly used in various processes, including chemical reactions, to prevent overheating and ensure efficient operation. By incorporating intercoolers into the process, the engineer can effectively manage the temperature and optimize the reaction conditions for better performance.

Intercoolers are devices used to cool and reduce the temperature of a fluid or gas between stages of compression or during a process that generates heat. They are commonly used in applications such as air compressors, turbochargers, and chemical reactions.

Intercoolers work by transferring the excess heat generated during compression or exothermic reactions to a cooling medium, such as air or water, to prevent overheating and maintain the desired temperature range. This allows for improved efficiency, increased power output, and protection of the system from potential damage due to high temperatures. Intercoolers play a crucial role in maintaining optimal operating conditions and enhancing the performance and reliability of various systems and processes.

Learn more about Endothermic reaction

brainly.com/question/28909381

#SPJ11

Which of the following is a non-polar molecule (have no permanent bond dipole moment)? Select the correct answer below: O CO2 be CO O CHO O CHO

Answers

CO₂ is a non-polar molecule. The correct answer is CO₂.

CO₂, which is carbon dioxide, is a non-polar molecule because it has a symmetrical shape and its bond dipoles cancel each other out. In CO₂, the carbon atom is bonded to two oxygen atoms. The molecule has a linear shape, with the carbon atom in the center and the oxygen atoms on either side.

The bond between the carbon atom and each oxygen atom is polar because oxygen is more electronegative than carbon, creating a partial negative charge on the oxygen atoms and a partial positive charge on the carbon atom. However, because the molecule is linear, the bond dipoles are equal in magnitude and opposite in direction, effectively canceling each other out.

This results in a non-polar molecule overall, with no permanent bond dipole moment. To summarize, CO₂ is a non-polar molecule because its bond dipoles cancel each other out due to its symmetrical linear shape. Hence, CO₂ is the correct answer.

You can learn more about non-polar molecules at: brainly.com/question/32290799

#SPJ11

"A stirred tank reactor can achieve higher oxygen transfer rates allowing higher cell densities. So we should switch to a stirred tank reactor with the Yes same dimensions." Reason for your decision:

Answers

A stirred tank reactor (STR) can attain higher oxygen transfer rates allowing higher cell densities. So we should switch to a stirred tank reactor with the Yes same dimensions because provide higher cell densities due to better oxygen transfer and process control.

The oxygen transfer rate in STRs is higher due to the turbulence caused by mixing and agitation, this results in better dispersion of oxygen in the culture broth, providing better oxygen transfer to cells. In comparison to other reactors, STRs are the most widely used bioreactors for several biological applications such as fermentation, cell culture, and biomass production. STRs are also suitable for continuous processes, reducing the need for batch operations.

In addition, STRs offer better process control, allowing for the monitoring and regulation of key process parameters such as pH, temperature, dissolved oxygen, and nutrient levels. These advantages make STRs a preferred choice for large-scale microbial and mammalian cell culture applications. So therefore, switching to a stirred tank reactor with the same dimensions is justified, and it can be expected to provide higher cell densities due to better oxygen transfer and process control.

Learn more about STRs at:

https://brainly.com/question/33225902

#SPJ11

1. A agriculturist needs a fertilizer that is 9% potash, but she can only find fertilizers that contain 6% and 15% potash. How much of each should she mix to obtain 10 kilograms of fertilizer that is 9% potash?
2. If a bag of fertilizer were labeled as containing 35% K2O,
a. What is the analysis when expressed as %K?
b. Assume the bag is labeled as 150% P, calculate the percentage
P2O5 in the bag.

Answers

To make a 10-kilogram fertilizer containing 9% potash, the farmer needs to combine around 6.67 kilograms of a 6% potash fertilizer with 3.33 kilograms of a 15% potash fertilizer.

On the other hand, a bag of fertilizer labeled as containing 35% K₂O can be expressed as containing 29.05 % K.

Calculation of components in fertilizers

We can set up a system of two equations based on the amount of potash in each fertilizer:

Equation 1: The total weight of the fertilizer is 10 kilograms:

x + y = 10

Equation 2: The percentage of potash in the mixture is 9%:

(0.06x + 0.15y) = 0.09(10)

0.06x + 0.15y = 0.9

Now we can solve the system of equations by substitution method.

From Equation 1, we can express x in terms of y:

x = 10 - y

Substituting this value of x into Equation 2:

0.06(10 - y) + 0.15y = 0.9

Expanding and simplifying the equation:

0.6 - 0.06y + 0.15y = 0.9

0.09y = 0.9 - 0.6

0.09y = 0.3

y = 0.3 / 0.09

y ≈ 3.33

Now, substitute the value of y back into Equation 1 to find x:

x + 3.33 = 10

x = 10 - 3.33

x ≈ 6.67

Therefore, the agriculturist should mix approximately 6.67 kilograms of the 6% potash fertilizer and 3.33 kilograms of the 15% potash fertilizer to obtain 10 kilograms of fertilizer that is 9% potash.

2a. Potassium oxide (K₂O) has a molar mass of 94.2 g/mol, while potassium (K) has a molar mass of 39.1 g/mol. Therefore, the conversion factor from K₂O to K is

(2 * 39.1) / 94.2 = 0.83.

So if a bag of fertilizer is labeled as containing 35% K₂O, then it contains

= 35 * 0.83 = 29.05% K.

Therefore, a bag of fertilizer labeled as containing 35% K₂O can be expressed as containing 29.05 % K.

2b. it’s not possible for a bag to be labeled as containing 150% P. The percentage of any component in a mixture must be between 0% and 100%.

practice and learn more about the calculation of components in fertilizers

https://brainly.com/question/31908437

#SPJ11

Explain why a thick layer of ice on the lake can support the weight of a person, but the liquid water cannot.

Answers

A thick layer of ice on a lake can support the weight of a person because ice is a solid state of water, while liquid water cannot support the weight due to its inherent fluidity.

Ice and liquid water are both forms of the same substance, H2O, but their molecular arrangements and physical properties differ. When water freezes, its molecules form a crystalline structure, creating a rigid network of interconnected ice molecules. This structure gives ice its solid and stable nature, allowing it to bear weight without collapsing. The lattice-like arrangement of molecules in ice makes it capable of withstanding pressure and maintaining its shape.

On the other hand, liquid water lacks a fixed molecular arrangement. The molecules in liquid water are more loosely packed and have higher mobility compared to ice. As a result, liquid water is fluid and doesn't have the structural integrity necessary to support the weight of a person or any significant load. The molecules in liquid water easily flow past each other, adapting to the shape of their container and exhibiting behaviors such as surface tension.

Learn more about fluidity

https://brainly.com/question/29534861

#SPJ11

What is the total number of carbon atoms on the right-hand side of this chemical equation? 6co2(g) 6h2o(l)=c6h12o6(s) 6o2(g)

Answers

The total number of carbon atoms on the right-hand side of the chemical equation is 6.

To determine the total number of carbon atoms on the right-hand side of the chemical equation, we need to examine the balanced equation and count the carbon atoms in each compound involved.

The balanced chemical equation is:

6 CO2(g) + 6 H2O(l) → C6H12O6(s) + 6 O2(g)

On the left-hand side, we have 6 CO2 molecules. Each CO2 molecule consists of one carbon atom (C) and two oxygen atoms (O). So, on the left-hand side, we have a total of 6 carbon atoms.

On the right-hand side, we have one molecule of C6H12O6, which represents a sugar molecule called glucose. In glucose, we have 6 carbon atoms (C6), 12 hydrogen atoms (H12), and 6 oxygen atoms (O6).

Therefore, on the right-hand side, we have a total of 6 carbon atoms.

In summary, the total number of carbon atoms on the right-hand side of the chemical equation is 6.

Learn more about carbon atoms here:

https://brainly.com/question/917705

#SPJ11

The fermentation of glucose into ethanol was carried out in a batch reactor using the organism Saccharomyces Cereviseae. Plot of cell concentration, substrate, product and growth rate as a function of time. Initial cell concentration = 1 g/dm3 and glucose concentration = 250 g/dm3.

Given: Cp* = 93 g/dm3, Yc/s = 0. 08 g/g, n = 0. 52, Yp/s = 0. 45 g/g, max = 0. 331/h, Yp/c = 5. 6 g/g, Ks = 1. 7 g/dm3, kd = 0. 01 1/h, m = 0. 03 g. Substrate/g. Cell

Answers

The fermentation of glucose into ethanol using Saccharomyces Cerevisiae as the organism was carried out in a batch reactor.

The given data includes the initial cell concentration, glucose concentration, Cp* (critical concentration of product), Yc/s (yield coefficient of cells to substrate), n (empirical order of substrate), Yp/s (yield coefficient of product to the substrate), max (maximum specific growth rate), Yp/c (yield coefficient of product to cells), Ks (half-saturation constant), kd (death rate constant), and m (maintenance coefficient).

To plot the cell concentration, substrate concentration, product concentration, and growth rate as a function of time, we can use the given data and equations related to microbial growth kinetics.

1. Calculate the specific growth rate (µ) using the equation: µ = µmax * (S / (Ks + S)). Here, S represents the substrate concentration. Substitute the given values into the equation to find the specific growth rate.
2. Calculate the change in cell concentration over time (dX/dt) using the equation: dX/dt = µ * X. X represents the cell concentration. Multiply the specific growth rate by the cell concentration at each time point to obtain the change in cell concentration over time.
3. Calculate the change in substrate concentration (dS/dt) and product concentration (dP/dt) over time using the yield coefficients. Use the equations: dS/dt = -Yc/s * dX/dt and dP/dt = Yp/s * dX/dt. Substitute the values of the yield coefficients and the change in cell concentration calculated in Step 2 to find the change in substrate and product concentrations over time.

To know more about fermentation  refer to this:

https://brainly.com/question/31279960

#SPJ11

(20 pts) Derive an expression for the expansion coefficient, a, and the isothermal compressibility, KT of a perfect gas as a function of T and P, respectively.

Answers

An expression for the expansion coefficient, a, and the isothermal compressibility, KT of a perfect gas as a function of T and P, respectively is  KT = -(1/V) * (∂V/∂P)T.

To derive the expression for the expansion coefficient, a, and the isothermal compressibility, KT, of a perfect gas as a function of temperature (T) and pressure (P), we start with the ideal gas law:

PV = nRT,

where P is the pressure, V is the volume, n is the number of moles, R is the ideal gas constant, and T is the temperature.

We can differentiate this equation with respect to temperature at constant pressure to obtain the expression for the expansion coefficient, a:

a = (1/V) * (∂V/∂T)P.

Next, we differentiate the ideal gas law with respect to pressure at constant temperature to obtain the expression for the isothermal compressibility, KT:

KT = -(1/V) * (∂V/∂P)T.

By substituting the appropriate derivatives (∂V/∂T)P and (∂V/∂P)T into the above expressions, we can obtain the final expressions for the expansion coefficient, a, and the isothermal compressibility, KT, of a perfect gas as functions of temperature and pressure, respectively.

Note: The specific expressions for a and KT will depend on the equation of state used to describe the behavior of the gas (e.g., ideal gas law, Van der Waals equation, etc.).

You can learn more about ideal gas law  at

https://brainly.com/question/27870704

#SPJ11

1. (20 pts) A reactor is to be designed in which the oxidation of cyanide (CN-) to cyanate (CNO-) is to occur by the following reaction 0.5 02 + CNCNO- The reactor is to be a tank that is vigorously stirred so that its contents are completely mixed, and into and out of which there is a constant flow of waste and treated effluent, respectively. The feed stream flow rate is 1 MGD, and contains 15,000 mg/L CN. The desired reactor effluent concentration is 10 mg/L CN-. Assume that oxygen is in excess and that the reaction is directly proportional to the cyanide concentration, with a rate constant of k = 0.5 sec¹¹. Determine the volume of reactor required to achieve the desired treatment objective, if the reactor behaves as a) an ideal PFR, b) an ideal CSTR. or c) a system consisting of 2 equal size ideal CSTRs connected in-series.

Answers

The reactor volume required to achieve the desired treatment objective is 2,085.9 L

For the oxidation of cyanide (CN-) to cyanate (CNO-), the following reaction occurs:

0.5 02 + CN- -> CNO-

The reactor is designed to be a tank that is vigorously stirred, so that its contents are completely mixed. The feed stream flow rate is 1 MGD, and contains 15,000 mg/L CN. The desired reactor effluent concentration is 10 mg/L CN-. Oxygen is in excess and the reaction is directly proportional to the cyanide concentration, with a rate constant of k = 0.5 sec¹¹.

Volume of reactor required to achieve the desired treatment objective

For an ideal PFR:

The volume of a PFR is calculated using the following equation:

V=Q/(-rA)

where,

Q=Volumetric flow rate of feed = 1 MGD = (1 MGD) (3.7854 L/1 gal) (1 day/24 h) (1 h/60 min) (1 min/60 s) = 62.42 L/s-r = k [C]^0.5. Since the reaction is first order, the half-life (t1/2) is calculated using the following equation:

t1/2 = 0.693/k = 0.693/0.5 sec¹¹= 1.386e+10 sec = 439 years

The concentration of CN- at the inlet to the PFR is 15,000 mg/L, while the desired concentration at the outlet is 10 mg/L. Therefore, the percentage removal is 99.93%. For a 99.93% removal, the equation becomes:

rA = k [C]^0.5 = (0.5 sec¹¹) [(15,000 - 10) mg/L]^0.5= 323.61 mg/L sV = Q/(-rA) = 62.42 L/s/(-323.61 mg/L s) = 0.192 L

For an ideal CSTR:

The reactor volume of a CSTR is calculated using the following equation:

V = Q(Ci - Ce) / (rA)

The volume of a CSTR is calculated using the following equation:

V = Q (C0 - Ce) / rAV = 62.42 L/s(15,000 - 10) mg/L / [(0.5 sec¹¹) (15,000 mg/L)^0.5]V = 4,171.8 L

For a system consisting of 2 equal size ideal CSTRs connected in-series:

The volume of each CSTR (V) is 2,085.9 L (half of the total volume of the reactor)

The reactor volume of a CSTR is calculated using the following equation:

V = Q(Ci - Ce) / (rA)

The concentration of CN- at the inlet to the first CSTR is 15,000 mg/L. The concentration of CN- at the outlet of the first CSTR is calculated using the following equation:

Ce1 = kV/Ci = (0.5 sec¹¹) (2,085.9 L) / (15,000 mg/L) = 6.94e-05 mg/L

The concentration of CN- at the inlet to the second CSTR is 6.94e-05 mg/L. The concentration of CN- at the outlet of the second CSTR is calculated using the following equation:

Ce2 = kV/Ci = (0.5 sec¹¹) (2,085.9 L) / (6.94e-05 mg/L) = 1.50e+13 mg/L

The reactor volume required to achieve the desired treatment objective is 2,085.9 L

Learn more about reactor volume

https://brainly.com/question/30888650

#SPJ11

Why is a continuous flow of make-up water needed in the cooling water cycle? To replace water lost due to evaporation in cooling towers To replace water lost to the process To reduce the heat transfer area needed in process coolers To minimize the need for recycle loops in the process To replace water which reacts to form products

Answers

To replace water lost due to evaporation in cooling towers.  The correct option is a.

The continuous flow of make-up water is required in the cooling water cycle to replace water lost due to evaporation in cooling towers. Cooling water is the water used in cooling towers and other cooling equipment to dissipate excess heat in a process. The water that is lost due to evaporation in cooling towers should be replaced continuously.

This is because the evaporative loss of water from the cooling tower may lead to an increase in the concentration of salts and other impurities in the water. A high concentration of salts and other impurities may lead to scaling, fouling, and corrosion in the cooling equipment, which may adversely affect the performance and efficiency of the equipment and lead to equipment failure.

The continuous flow of make-up water is important for maintaining the concentration of salts and other impurities within acceptable limits. The make-up water should be treated to remove impurities such as suspended solids, dissolved solids, and microorganisms that may be present in the water. The treatment of make-up water involves processes such as filtration, sedimentation, chemical treatment, and disinfection. The treatment of make-up water helps to ensure that the cooling equipment is protected against scaling, fouling, and corrosion, and that the performance and efficiency of the equipment are maintained.

the correct option is a.

To learn more on  water cycle:

https://brainly.com/question/25796102

#SPJ11

2. Distamycin and derivatives have exhibited antiviral, antibiotic, and antitumor activity by binding to the minor groove of DNA (J. Med. Chem. 2004, 2133). Place a line through each bond of distamycin that would be cleaved by acid hydrolysis.

Answers

The bond between the nitrogen and the amide group in distamycin would be cleaved by acid hydrolysis.

Distamycin is a peptide antibiotic that has demonstrated antiviral, antibiotic, and antitumor activity. It does this by binding to the minor groove of DNA.Acid hydrolysis is a process in which molecules are broken down in the presence of an acid. Acid hydrolysis is widely used to cleave certain types of chemical bonds.

When treated with acid hydrolysis, the bonds that hold the molecule of distamycin are broken, leading to the production of its derivatives.To identify the bonds that would be cleaved by acid hydrolysis in distamycin, we must first examine its chemical structure. Distamycin has two aromatic rings, a nitrogen-containing heterocycle, and an amide-containing tail. In the presence of acid, the amide bond is cleaved, leading to the production of two smaller peptides and an acid. To place a line through each bond that would be cleaved by acid hydrolysis, we can isolate the amide bond in the structure.

Thus, the amide bond is located between the nitrogen-containing heterocycle and the amide-containing tail. Therefore, the bond between the nitrogen and the amide group is the one that would be cleaved.

Learn more about DNA:

https://brainly.com/question/30006059

#SPJ11

(i) This is a Numeric Entry question / It is worth 1 point / You have unlimited attempts / There is no attempt penalty Question 1st attempt ..i. See Periodic Table COAST Tutorial Problem The K b

of dimethylamine [(CH 3

) 2

NH] is 5.90×10 −4
at 25 ∘
C. Calculate the pH of a 0.0440M solution of dimethylamine.

Answers

The pH of the 0.0440 M solution of dimethylamine is approximately 10.77.

To calculate the pH of a 0.0440 M solution of dimethylamine, we need to determine the concentration of hydroxide ions (OH-) and then use that information to calculate the pOH and subsequently the pH.

Kb of dimethylamine (CH₃)₂NH = 5.90 × 10⁻⁴ at 25 °C

Concentration of dimethylamine = 0.0440 M

Since dimethylamine is a weak base, it reacts with water to produce hydroxide ions and its conjugate acid:

(CH₃)₂NH + H₂O ⇌ (CH₃)₂NH₂⁺ + OH⁻

From the balanced equation, we can see that the concentration of hydroxide ions is the same as the concentration of the dimethylamine that has reacted.

To calculate the concentration of OH⁻ ions, we need to use the equilibrium expression for Kb:

Kb = [NH₂⁻][OH⁻] / [(CH₃)₂NH]

Since the concentration of (CH₃)₂NH is equal to the initial concentration of dimethylamine (0.0440 M), we can rearrange the equation as follows:

[OH-] = (Kb * [(CH₃)₂NH]) / [NH₂⁻]

[OH-] = (5.90 × 10⁻⁴ * 0.0440) / 0.0440

[OH-] = 5.90 × 10⁻⁴ M

Now, we can calculate the pOH using the concentration of hydroxide ions:

pOH = -log([OH-])

pOH = -log(5.90 × 10⁻⁴)

pOH ≈ 3.23

Finally, we can calculate the pH using the relation:

pH = 14 - pOH

pH = 14 - 3.23

pH ≈ 10.77

Therefore, the pH of the 0.0440 M solution of dimethylamine is approximately 10.77.

Learn more about dimethylamine solution :

brainly.com/question/14745240

#SPJ11

The diagrams below are illustrations of some farm tools. Study them carefully and use
them to answer the questions that follow.
1)
iii)
M
Die
N
P
T.
Q
Identify each of the tools labelled M, N, P and Q.
Mention one use each of the tools labelled M, N, P and Q.
[4 marks]
[4 marks]
State two precautions that must be taken when using the labelled P. [2 marks].

Answers

According to the information we can infer that these tools are: P.aspersor, Q. sword, M. manual drill, N. blind. According to the above, these tools are used to build and sprinkle crops.

What tools do we see in the image?

According to the image we can infer that the different tools are:

P. sprinkler.Q. sword.M. hand drill.N. blind.

On the other hand, the functions of these tools are:

P. apply substances on crops.Q. Cut crops.M. Make holes.N. Make cuts.

The precautions that we must take with these tools (P) are:

Good handling.Use personal protection elements.

Note: This question is incomplete. Here is the complete information:

Attached image

Learn more about tools in: https://brainly.com/question/31719557

#SPJ1

Other Questions
Consider the market for some product X that is represented in the accompanying demand-and-supply diagram. a. Calculate the total economic surplus in this market at = the free-market equilibrium price and quantity. The total economic surplus is $1920 per day. (Round your response to the nearest cent as needed.) b. Calculate the total economic surplus in this market when a price ceiling at $28 is in effect. The total economic surplus is $ per day. (Round your response to the nearest cent as needed.) c. After imposition of the price ceiling at $28, how many units of this good are no longer being produced and consumed per day compared to the free-market equilibrium? 40 unit(s) of this good are no longer being produced and consumed per day compared to the free-market equilibrium. consumed per day compared to the free-market equilibrium. (Round your response to the nearest whole number as needed.) d. Calculate the deadweight loss that results from the imposition of the price ceiling at $28. The deadweight loss that results from the imposition of the price ceiling at $28 is $480 per day. (Round your response to the nearest cent as needed.) e. Calculate the total economic surplus in this market when a price floor at $44 is in effect. The total economic surplus is $1800 per day. (Round your response to the nearest cent as needed.) f. Calculate the deadweight loss that results from the imposition of the price floor at $44. The deadweight loss that results from the imposition of the price floor at $44 is $120 per day. (Round your response to the nearest cent as needed.) What is the term for the sequence of signaling events created by protein kinases phosphorylating other proteins? O None of the answers are correct Phosphorylation Cascade Deactivation Cascade O Transcription Cascade Why was the medieval times in historical progression of psychology so interesting?1. Describe the period and its zeitgeist in detail2. List a philosopher/ psychologist of the time3. List a philosopher/ psychologist of the time4. How did this specific period help move psychology forward Draw Design Transitions Animations Slide Show Record Review View Help Tell me what you want to do eful-files from the Internet can contain viruses. Unless you need to edit, it's sater to stay in Protected View, Enable Editing Assignment 2 RM10,000 A sum of RM10,000.00 was found in a park. There are two different persons, Astra and Zeneca, claimed that they have carelessly dropped the money while at the park earlier. Since they came to the park together with another person, Omi was also called as the witness. Astra said that at least one of them does not own the money. And Zeneca also claimed that Astra is not telling the truth. Omi remained silence. Use logic to explain who did not tell the truth. 4 ^4 ENG -ch O Alig T 471 3:21 PM 6/18/20 Assignment: David, a Charge Nurse brought forward a complaint regarding a conflict in relationship with Staff Nurse Catherine. David reported that over a period of six months, since his appointment to the unit, tension continued to escalate between him and the Staff Nurse. At the time of the complaint, he indicated that he felt that he was working in an unhealthy, hostile environment. David could not identify when the conflict began but recognized that an on-going deterioration of the relationship had resulted and that a series of small events contributed to the problems. The two nurses were no longer speaking directly to each other unless absolutely necessary. The other staff members noticed that communication was significantly impacted and even information regarding patient care was shared with limitations. David reported that he and Catherine had very different work styles and approaches to patient care. David reported feeling that Catherine was a strong personality that others avoided for fear of disapproval or reprisals. He felt as though he was excluded from the group of seasoned employees because he was new to the unit, essentially an outsider. Furthermore, David felt that a power imbalance existed and that Catherine held a great deal of influence over others, regardless of the fact that he was in a leadership position. Additionally, he believed that Catherine did not complete her work, and this perception contributed to the conflict. Questions: 1. What is the impact of the conflict? 2. How will you mitigate conflict and negotiate? Your paper should include the following: - Not more than four pages excluding references - Must have an appropriate header -An introduction to your subject and question - Citations of sources integrated throughout the text using APA standard format - A conclusion section reviewing what you discussed throughout the paper Begin each entry with a bibliographic reference (author, title, publication info) using APA format. Double-space, please. References should be hanging indent. - Hydrocephalus is a buildup of cerebrospinal fluid in the ventricles of the brain. Explain why this buildup is a serious problem, and propose a sign or symptom that would indicate cerebrospinal fluid buildup How did the Civil War shift from a war to preserve the Union to a war to destroy the institution of slavery? In your response, make an argument that traces how the main objective of the war shifted for the United States. Please be sure to discuss the key moments that demonstrate how that change occurred. 5b) Use your equation in part a to determine the closet for 60 minutes. indicate whether each of the following statements applies to microeconomics or macroeconomics: a. the unemployment rate in the united states was 3.7 percent in december 2018: what happened in London in 1953 shakespeare? Calculate the kinetic energy of an electron moving at 0.645 c. Express your answer in MeV, to three significant figures. (Recall that the mass of a proton may be written as 0.511MeV/c2.) After watching the video, please answer the questions listed below.https://www.ted.com/talks/joseph_pine_what_consumers_want#t-663291Explain the significance of the progression of economic value. Walk through the progression from Commodities, to Services, to Goods, to Experience. Identify the Business Imperative and Consumer sensitivity for each.What is mass marketing? Explain why this model of marketing is not as effective as it was in years past.Why do people value connectivity? Describe the benefits of connectivity to a business.According to Joseph Pine say about authenticity?How will the concepts presented in this video affect consumer preferences in the future? Of the various forms of nitrogen wastes animals excrete, their choice has much to do with the following factor(s) a.all of the answers are correct b.sensitivity to nitrogenous waste toxicity c.availability of water in the environment d.metabolic cost of synthesis BU 7 . In scenario 1, assume that COGS is 75% of sales (which means your profit margin will be 25% on every widget you sell). The first scenario assumes that no change occurs, either in reduction in costs, or, in sales revenues. We'll call this first scenario the "as is" or, "the status quo scenario." Your sales revenue in scenario 1 is $600 million. In scenario 2, you reduce the original COGS from, 75% to 65% (through improvements in purchasing and procurement). You had to spend money (on new software, etc.) to reduce your purchasing costs and so your S&A increased by $2.0 million. Remember that in scenario 2 you don't increase your sales at all---so your sales revenues stay the same (no change from scenario 1), as do your Promotional Expenses (don't change from scenario 1) In scenario 3, you increase promotional expenses by 15% (from a starting point of $35 million), resulting in a 25% increase in annual sales revenues. S&A costs increase by $5 million. Your purchasing costs do not decrease (i.e., COGS stays the same as it was in scenariol at 75%). Scenario 1 Annual sales: $600 million. S COGS: million Gross Profit $150 million Promotional Expenses Scenario 2 $600 million S $ million million Scenario 31 S $ million million million C T Promotional Expenses $35 million Sales/Administration $5 million Total profit before taxes: million Jad $35 million million million $ million million million 3 Point Question: Based on the scenarios presented above, what implication can be drawn from the above problem? For a double-slit configuration where the slit separation is 4 times the slit width, how many bright interference fringes lie in the central peak of the diffraction pattern? A nurse obtains a blood pressure reading of 140/92 on a clientadmitted after a surgical procedure. The client denies any history ofhypertension. Which of the following actions should the nurse takefirst?A.Contact the provider and request a prescription for a medication to decrease the blood pressureB.Have another nurse obtain the blood pressureC.Return in 30 minutes and retake the blood pressureD.Ask the client if they are having any pain Textbook is called The Psychology of Diversity: Beyond Prejudice and Racism for additional guidanceASSIGNMENT:Describe hostile sexism and provide an example. An object 1.50 cm high is held 3.05 cm from a person's cornea, and its reflected image is measured to be 0.174 cm high. (a) What is the magnification? x (b) Where is the image (in cm )? cm (from the corneal "mirror") (c) Find the radius of curvature (in cm ) of the convex mirror formed by the cornea. (Note that this technique is used by optometrists to measure the curvature of the cornea for contact lens fitting. The instrument used is called a keratometer, or curve measurer.) cm A is 67.0 m long at a 35.0' angle with respect to the +x-axis. B is 50.0 m long at a 65.0' angle above the-x-axis. What is the magnitude of the sum of vectors A and B? What angle does the sum of vectors A and B make with the x-axis? briefly define a scope statement and explain any six items thatthe team can include in their scope Steam Workshop Downloader