A large fish tank is to be constructed so that the length of that base is twice the width of the base. if the material used to construct the bottom and top faces of the tank cost $15 per square foot, and the glass used to construct the side faces costs $20 per foot what are the dimensions of the largest tank possible, assuming that the total cost of the tank cannot exceed $2000?

Answers

Answer 1

The largest possible tank dimensions, considering the cost constraints, are a length of 20 feet and a width of 10 feet. This configuration ensures a base length twice the width, with the maximum cost not exceeding $2000.

Let's assume the width of the base to be x feet.

According to the given information, the length of the base is twice the width, so the length would be 2x feet.

The area of the base is then given by x * 2x = 2x^2 square feet.

To calculate the cost, we need to consider the materials used for the bottom and top faces, as well as the glass used for the side faces. The cost of the bottom and top faces is $15 per square foot, so their combined cost would be 2 * 15 * 2x^2 = 60x^2 dollars.

The cost of the glass used for the side faces is $20 per foot, and the height of the tank is not given.

However, since we are trying to maximize the tank size while staying within the cost limit, we can assume a height of 1 foot to minimize the cost of the glass.

Therefore, the cost of the glass for the side faces would be 20 * 2x * 1 = 40x dollars.

To find the total cost, we sum the cost of the bottom and top faces with the cost of the glass for the side faces: 60x^2 + 40x.

The total cost should not exceed $2000, so we have the inequality: 60x^2 + 40x ≤ 2000.

To find the maximum dimensions, we solve this inequality. By rearranging the terms and simplifying, we get: 3x^2 + 2x - 100 ≤ 0.

Using quadratic formula or factoring, we find the roots of the equation as x = -5 and x = 10/3. Since the width cannot be negative, the maximum width is approximately 3.33 feet.

Considering the width to be approximately 3.33 feet, the length of the base would be twice the width, or approximately 6.67 feet. Therefore, the largest tank dimensions that satisfy the cost constraint are a length of 6.67 feet and a width of 3.33 feet.

Learn more about quadratic formula:

https://brainly.com/question/22364785

#SPJ11


Related Questions

can someone help meee!!!!

Answers

x - y is a factor of x² - y² and x³ - y³

Option B is the correct answer.

We have,

To determine if the quantity x - y is a factor of a given expression, we can substitute x = y into the expression and check if the result is equal to zero.

Let's evaluate each expression with x - y and see if it results in zero:

x² - y²:

Substituting x = y, we get (y)² - y² = 0.

Therefore, x - y is a factor of x² - y².

x² + y²:

Substituting x = y, we get (y)² + y² = 2y². Since the result is not zero, x - y is not a factor of x² + y².

x³ - y³:

Substituting x = y, we get (y)³ - y³ = 0.

Therefore, x - y is a factor of x³ - y³.

x³ + y³:

Substituting x = y, we get (y)³ + y³ = 2y³.

Since the result is not zero, x - y is not a factor of x³ + y³.

Thus,

x - y is a factor of x² - y² and x³ - y³, but it is not a factor of x² + y² or x³ + y³.

Learn more about expressions here:

https://brainly.com/question/3118662

#SPJ1

Find a general solution to the system below. 8 -6 20-10 : x'(t) = X(t) 6 4 This system has a repeated eigenvalue and one linearly independent eigenvector. To find a general solution, first obtain a no

Answers

The general solution to the given system is x(t) = c₁e^(2t)[-1, 2] + c₂te^(2t)[-1, 2], where c₁ and c₂ can be any constants.

The given system is represented by the matrix equation x'(t) = AX(t), where A is the coefficient matrix. In order to find the eigenvectors, we need to solve the characteristic equation det(A - λI) = 0, where λ is the eigenvalue and I is the identity matrix.

In this case, the characteristic equation becomes:

det(A - λI) = det([[8-λ, -6], [20, 4-λ]]) = (8-λ)(4-λ) - (-6)(20) = (λ-2)(λ-10) = 0

The eigenvalues are λ₁ = 2 and λ₂ = 10. Since there is a repeated eigenvalue, we need to find the corresponding eigenvector(s) using the eigenvector equation (A - λI)v = 0.

For λ₁ = 2:

(A - 2I)v₁ = [[8-2, -6], [20, 4-2]]v₁ = [[6, -6], [20, 2]]v₁ = 0

Solving this system of equations yields the eigenvector v₁ = [-1, 2].

Now, we can construct the general solution using the formula x(t) = c₁e^(λ₁t)v₁ + c₂te^(λ₁t)v₁, where c₁ and c₂ are constants.

Therefore, the general solution to the given system is x(t) = c₁e^(2t)[-1, 2] + c₂te^(2t)[-1, 2], where c₁ and c₂ can be any constants.

Learn more about eigenvector here:

https://brainly.com/question/31669528

#SPJ11

Expand the given functions by the Laurent series a. f(z) = in the range of (a) 0 < 1z< 1; (b) 121 > 1 (10%) 23-24 b. f(z) = (z+1)(z-21) in the range of (a) [z + 11 > V5; (b) 0< Iz - 2il < 2

Answers

(a) f(z) = (z)/(1 - z) is function f(z) with pole of order 1 at z = 1 (b)  an = [tex]1/(2πi) ∮C 1/(z-1) (z-1)n dz[/tex], bn = [tex]1/(2πi) ∮C 1/z (z-1)n dz[/tex] for the laurent series.

Laurent series: Laurent series are expansions of functions in power series about singularities.

Functions: Functions are the rule or set of rules that one needs to follow to map each element of one set with another set. Expand the given functions by the Laurent series.

a. f(z) = in the range of (a) 0 < 1z< 1; (b) 121 > 1Solution: The given function is f(z) = and the range is given as (a) 0 < |z| < 1 and (b) 1 < |z| < 21. Consider range (a), we can rewrite the given function f(z) as below: f(z) = (z)/(1 - z)The given function f(z) has a pole of order 1 at z = 1.

Therefore, Laurent series of f(z) in the range (a) 0 < |z| < 1 is given as below: [tex]f(z) = ∞∑n=0zn = 1+z+z2+... . . . (1)[/tex]  Consider range (b), we can rewrite the given function f(z) as below:f(z) = (1/z) - (1/(z-1))The given function f(z) has a pole of order 1 at z = 0 and a pole of order 1 at z = 1.

Therefore, Laurent series of f(z) in the range (b) 1 < |z| < 21 is given as below: f(z) =[tex]∞∑n=1an(z-1)n + ∞∑n=0bn(z-1)n . .[/tex]. (2) We can find out the coefficients an and bn as below: [tex]an = 1/(2πi) ∮C 1/(z-1) (z-1)n dz bn = 1/(2πi) ∮C 1/z (z-1)n dz[/tex]where C is a closed contour inside the region 1 < |z| < 2.

So, the coefficients an and bn are given as below:[tex]an = 1/(2πi) ∮C 1/(z-1) (z-1)n dzan = (1/2πi) 2πi (1/(n-1)) = -1/(n-1)bn = 1/(2πi) ∮C 1/z (z-1)n dzbn = (1/2πi) 2πi = 1[/tex] Thus, the Laurent series of f(z) in the range (b) 1 < |z| < 21 is given as below:

[tex]f(z) = ∞∑n=1(-1/(n-1))(z-1)n + ∞∑n=0(z-1)n = -1 - (1/(z-1)) + z + z2 + ... . . . (3)[/tex] Therefore, the Laurent series of the given function is as follows:(a) In the range of 0 < |z| < 1: [tex]f(z) = ∞∑n=0zn = 1+z+z2+... . . . (1)[/tex] (b) In the range of 1 < |z| < 21: [tex]f(z) = ∞∑n=1(-1/(n-1))(z-1)n + ∞∑n=0(z-1)n = -1 - (1/(z-1)) + z + z2 + ... . . . (3)[/tex].

Learn more about laurent series here:

https://brainly.com/question/32273131


#SPJ11

Evaluate the integral [(5x3+7x+13) sin( 2 x) dx Answer: You have not attempted this yet

Answers

The integral [(5x3+7x+13) sin( 2 x) dx is -1/2 (5x³ + 7x + 13) cos(2x) + 1/2 (15x² + 7) sin(2x) - 15/8 sin(2x) + C

The integral ∫[(5x³ + 7x + 13)sin(2x)] dx, we can use integration by parts. The integration by parts formula states

∫[u dv] = uv - ∫[v du]

Let's assign u and dv as follows: u = (5x³ + 7x + 13) dv = sin(2x) dx

Taking the derivatives, we have: du = (15x² + 7) dx v = -1/2 cos(2x)

Now we can apply the integration by parts formula:

∫[(5x³ + 7x + 13)sin(2x)] dx = -1/2 (5x³ + 7x + 13) cos(2x) - ∫[-1/2 cos(2x)(15x² + 7) dx]

Simplifying the expression, we get:

∫[(5x³ + 7x + 13)sin(2x)] dx = -1/2 (5x³ + 7x + 13) cos(2x) + 1/2 ∫[cos(2x)(15x² + 7) dx]

Now we need to integrate the second term on the right side. We can again use integration by parts:

Let's assign u and dv as follows: u = (15x² + 7) dv = cos(2x) dx

Taking the derivatives, we have: du = (30x) dx v = 1/2 sin(2x)

Applying the integration by parts formula again, we get:

1/2 ∫[cos(2x)(15x² + 7) dx] = 1/2 (15x² + 7) sin(2x) - 1/2 ∫[sin(2x)(30x) dx]

Simplifying further, we have:

1/2 ∫[cos(2x)(15x^2 + 7) dx] = 1/2 (15x² + 7) sin(2x) - 1/2 ∫[sin(2x)(30x) dx]

Now we have a new integral to evaluate, but notice that it is similar to the original integral. We can use integration by parts once more to evaluate this integral:

Let's assign u and dv as follows:

u = 30x

dv = sin(2x) dx

Taking the derivatives, we have: du = 30 dx v = -1/2 cos(2x)

Applying the integration by parts formula again, we get:

-1/2 ∫[sin(2x)(30x) dx] = -1/2 (30x)(-1/2 cos(2x)) - 1/2 ∫[(-1/2 cos(2x))(30) dx]

-1/2 ∫[sin(2x)(30x) dx] = 15x cos(2x) + 15/4 ∫[cos(2x) dx]

15/4 ∫[cos(2x) dx] = 15/4 (1/2 sin(2x))

∫[(5x^3 + 7x + 13)sin(2x)] dx = -1/2 (5x³ + 7x + 13) cos(2x) + 1/2 (15x² + 7) sin(2x) - 15/8 sin(2x) + C

where C is the constant of integration.

To know more about click here :

https://brainly.com/question/31744185

#SPJ4

Find the upper sum for the region bounded by the graphs of f(x) = x² and the x-axis between x = 0 and x = 2.

Answers

To find the upper sum for the region bounded by the graph of f(x) = x² and the x-axis between x = 0 and x = 2, we divide the interval [0, 2] into smaller subintervals and approximate the area under the curve by using the maximum value of f(x) within each subinterval as the height of a rectangle. The upper sum is obtained by summing up the areas of all the rectangles.

We divide the interval [0, 2] into n subintervals of equal width, where n determines the number of rectangles used in the approximation. The width of each subinterval is given by (b - a)/n, where a and b are the endpoints of the interval.

In this case, the interval is [0, 2], so the width of each subinterval is (2 - 0)/n = 2/n.

To find the upper sum, we evaluate the function f(x) = x² at the right endpoint of each subinterval and use the maximum value as the height of the rectangle within that subinterval. Since f(x) = x² is an increasing function in the interval [0, 2], the maximum value of f(x) within each subinterval occurs at the right endpoint.

The upper sum is then obtained by summing up the areas of all the rectangles:

Upper Sum = Area of Rectangle 1 + Area of Rectangle 2 + ... + Area of Rectangle n

The area of each rectangle is given by the width times the height:

Area of Rectangle = (2/n) * f(right endpoint)

After evaluating f(x) at the respective right endpoints and performing the calculations, we can simplify the expression and obtain the upper sum for the region bounded by the graph of f(x) = x² and the x-axis between x = 0 and x = 2.

To learn more about endpoints : brainly.com/question/30128121

#SPJ11

Find the volume. A rectangular prism with length 9.3 centimeters, width 5.9 centimeters, and height 4.4 centimeters. a. 19.6 cu. cm b. 241.428 cu. cm c. 59.27 cu. cm d. None of these

Answers

A rectangular prism with a length of 9.3 centimeters, width of 5.9 centimeters, and height of 4.4 centimeters. The volume is 241.428 cu. cm (Option b).

The formula to calculate the volume of a rectangular prism is

V= l × w × h.

Here, l, w, and h represent the length, width, and height of the prism respectively. The length, width, and height of the rectangular prism are as follows:

Length (l) = 9.3 cm

Width (w) = 5.9 cm

Height (h) = 4.4 cm

Therefore, the formula to calculate the volume of the rectangular prism is:

V= l × w × h

On substituting the given values in the formula, we get

V = 9.3 × 5.9 × 4.4V = 241.428 cu. cm

Hence, the volume of the rectangular prism is 241.428 cubic centimeters. Option b is the correct answer.

Note: Always remember the formula V = l × w × h to calculate the volume of a rectangular prism.

You can learn more about volume at: brainly.com/question/28058531

#SPJ11

Score on last try: 0 of 1 pts. See Details for more. Get a similar question You can retry this question below Find the area that lies inside r = 3 cos 0 and outside r = 1 + cos 0. m/6 π+√3 X www 11

Answers

The area that lies inside the curve r=3cosθ and outside the curve r=1+cosθ is [tex]A = \frac{3\sqrt3}{2} - \frac{4\pi}{3}[/tex]  square units.

What is the trigonometric ratio?

the trigonometric functions are real functions that relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all sciences that are related to geometry, such as navigation, solid mechanics, celestial mechanics, geodesy, and many others.

To find the area that lies inside the curve r=3cosθ and outside the curve r=1+cosθ, we need to determine the limits of integration for θ and set up the integral for calculating the area.

First, let's plot the two curves to visualize the region:

The curves intersect at two points: θ= π/3 and θ= 5π/3.

To find the limits of integration for θ, we need to determine the values where the two curves intersect. By setting the two equations equal to each other:

3cosθ=1+cosθ

Simplifying:

2cosθ=1

cosθ= 1/2

The values of θ where the curves intersect are

θ= π/3 and θ= 5π/3.

To find the area, we'll integrate the difference of the outer curve equation squared and the inner curve equation squared with respect to θ, using the limits of integration from θ= π/3 and θ= 5π/3.

The area can be calculated using the following integral:

[tex]A=\int\limits^{5\pi/3}_{\pi/3} ((3cos\theta)^2 - (1+cos\theta)^2)d\theta[/tex]

Let's simplify and calculate this integral:

[tex]A=\int\limits^{5\pi/3}_{\pi/3} ((8cos^2\theta - 2cos\theta -1)^2)d\theta[/tex]

Now we can integrate this expression:

[tex]A=[ 8/3 sin\theta - sin2\theta) -\theta ]^{5\pi/3}_{\pi/3}[/tex]

Substituting the limits of integration:

[tex]A= ( 8/3 sin(5\pi/3) - sin(10\pi/3) - (5\pi/3) - ( 8/3 sin(\pi/3) - sin(2\pi/3) - (\pi/3)[/tex]

Simplifying the trigonometric values:

[tex]A= ( 8/3 \cdot \sqrt3 /2 - (-\sqrt3 /2) - (5\pi/3) - ( 8/3 \cdot \sqrt3 /2 - \sqrt3 /2 - (\pi/3)[/tex]

[tex]A = \frac{3\sqrt3}{2} - \frac{4\pi}{3}[/tex]

Therefore, the area that lies inside the curve r=3cosθ and outside the curve r=1+cosθ is [tex]A = \frac{3\sqrt3}{2} - \frac{4\pi}{3}[/tex]  square units.

To learn more about the trigonometric ratio visit:

https://brainly.com/question/13729598

#SPJ4

If f (u, v) = 5u²v - 3uv³, find f (1, 2), fu (1, 2), and fv (1, 2). a) f (1, 2) b) fu (1, 2) c) fv (1, 2) 4

Answers

For the function f(u, v) = 5u²v - 3uv³, the value of f(1, 2) is 4. The partial derivative fu(1, 2) is 10v - 6uv² evaluated at (1, 2), resulting in 14. The partial derivative fv(1, 2) is 5u² - 9uv² evaluated at (1, 2), resulting in -13.

To find f(1, 2), we substitute u = 1 and v = 2 into the function f(u, v). Plugging in these values, we get f(1, 2) = 5(1)²(2) - 3(1)(2)³ = 10 - 48 = -38.

To find the partial derivative fu, we differentiate the function f(u, v) with respect to u while treating v as a constant. Taking the derivative, we get fu = 10uv - 6uv². Evaluating this expression at (1, 2), we have fu(1, 2) = 10(2) - 6(1)(2)² = 20 - 24 = -4.

To find the partial derivative fv, we differentiate the function f(u, v) with respect to v while treating u as a constant. Taking the derivative, we get fv = 5u² - 9u²v². Evaluating this expression at (1, 2), we have fv(1, 2) = 5(1)² - 9(1)²(2)² = 5 - 36 = -31.

Therefore, the values are:

a) f(1, 2) = -38

b) fu(1, 2) = -4

c) fv(1, 2) = -31

Learn more about partial derivative here:

https://brainly.com/question/32387059

#SPJ11


step hy step please
3. [20 pts] Calculate derivatives of the following functions: (a) f(x) = 2x tan 1 e' (b) f(x)= COS.X +1 (c) y = sin(2x)+ tan(x +1) (a) f(x) = tan x + In (+1) 1

Answers

(a) The derivative of [tex]f(x) = 2x tan(1/e)[/tex]is obtained using the chain rule. The derivative is[tex]f'(x) = 2 tan(1/e) + 2x sec^2(1/e) * (-1/e^2).[/tex]

To find the derivative of f(x) = 2x tan(1/e), we apply the chain rule. The chain rule states that if we have a function of the form f(g(x)), the derivative is given by[tex]f'(g(x)) * g'(x).[/tex]

In this case, g(x) = 1/e, so g'(x) = 0 since 1/e is a constant. The derivative of tan(x) is sec^2(x), so we have f'(x) = 2 tan(1/e) + 2x sec^2(1/e) * g'(x). Since g'(x) = 0, the second term disappears, leaving us with f'(x) = 2 tan(1/e).

(b) The derivative of f(x) = cos(x) + 1 is obtained using the derivative rules. The derivative is f'(x) = -sin(x).

Explanation:

The derivative of cos(x) is -sin(x) according to the derivative rules. Since 1 is a constant, its derivative is 0. Therefore, the derivative of f(x) = cos(x) + 1 is f'(x) = -sin(x).

(c) The derivative of [tex]y = sin(2x) + tan(x + 1)[/tex] is obtained using the derivative rules. The derivative is [tex]y' = 2cos(2x) + sec^2(x + 1).[/tex]

Explanation:

To find the derivative of y = sin(2x) + tan(x + 1), we apply the derivative rules. The derivative of sin(x) is cos(x), and the derivative of tan(x) is sec^2(x).

For the first term, sin(2x), we use the chain rule. The derivative of sin(u) is cos(u), and since u = 2x, the derivative is cos(2x).

For the second term, tan(x + 1), the derivative is sec^2(x + 1) since the derivative of tan(x) is sec^2(x).

Combining these two derivatives, we get [tex]y' = 2cos(2x) + sec^2(x + 1)[/tex] as the derivative of[tex]y = sin(2x) + tan(x + 1).[/tex]

(d) It seems there is a typo or a formatting issue in the provided function [tex]f(x) = tan(x) + In(+1)[/tex] 1. Please clarify the function, and I will be happy to help you with its derivative.

Learn more about derivative  here:

https://brainly.com/question/29144258

#SPJ11




(1 point) Find fæ, fy, and fz. f(x, y, z) = (6x2 + 4y? + 922) = 6x² -0.5 = fx . fy = ini II . fa = . -1 f(x, y, z) = sec (3x + 9yz) = fx fy = E 101 100 1 fz = . 100
(1 point) Find fæ, fy, and fz.

Answers

We have the partial derivatives [tex]f_x = \frac{-3x}{[(6x^{2} + 4y^{2} + 9z^{2})^{3/2}]}, f_y = \frac{-2y}{[(6x^{2} + 4y^{2} + 9z^{2})^{3/2}]}, f_z = \frac{-9z}{[(6x^{2} + 4y^{2} + 9z^{2})^{3/2}]}[/tex]

Here's the step-by-step differentiation process for finding fₓ, fᵧ, and f₂,

To find fₓ:

1. Differentiate the function with respect to x, treating y and z as constants.

  fₓ = d/dx [1/√(6x² + 4y² + 9z²)]

2. Apply the chain rule:

[tex]f_x = \frac{-1}{2}(6x^{2} + 4y^{2} + 9z^{2})^{-1/2} * \frac{d}{dx}(6x^{2} + 4y^{2} + 9z^{2})[/tex]

3. Simplify and differentiate the expression inside the square root:

[tex]f_x = \frac{-1}{2}(6x^{2} + 4y^{2} + 9z^{2})^{-1/2} * 12x[/tex]

4. Combine the terms and simplify further:

[tex]f_x = \frac{-3x}{(6x^{2} + 4y^{2} + 9z^{2})^{-3/2}}[/tex]

To find fᵧ:

1. Differentiate the function with respect to y, treating x and z as constants.

  fᵧ = d/dy [1/√(6x² + 4y² + 9z²)]

2. Apply the chain rule:

[tex]f_x = \frac{-1}{2}(6x^{2} + 4y^{2} + 9z^{2})^{-1/2} * \frac{d}{dx}(6x^{2} + 4y^{2} + 9z^{2})[/tex]

3. Simplify and differentiate the expression inside the square root:

[tex]f_x = \frac{-1}{2}(6x^{2} + 4y^{2} + 9z^{2})^{-1/2} * 8y[/tex]

4. Combine the terms and simplify further:

[tex]f_x = \frac{-2y}{(6x^{2} + 4y^{2} + 9z^{2})^{-3/2}}[/tex]

To find f₂:

1. Differentiate the function with respect to z, treating x and y as constants.

  f₂ = d/dz [1/√(6x² + 4y² + 9z²)]

2. Apply the chain rule:

[tex]f_x = \frac{-1}{2}(6x^{2} + 4y^{2} + 9z^{2})^{-1/2} * \frac{d}{dx}(6x^{2} + 4y^{2} + 9z^{2})[/tex]

3. Simplify and differentiate the expression inside the square root:

[tex]f_x = \frac{-1}{2}(6x^{2} + 4y^{2} + 9z^{2})^{-1/2} * 18z[/tex]

4. Combine the terms and simplify further:

[tex]f_x = \frac{-9y}{(6x^{2} + 4y^{2} + 9z^{2})^{-3/2}}[/tex]

These are the partial derivatives with respect to x, y, and z, respectively, of the given function f(x, y, z).

To know more about partial differentiation, visit,

https://brainly.com/question/31280533

#SPJ4

Complete question - Find fₓ, fᵧ and f₂ if f(x, y, x) = 1/√(6x² + 4y² + 9z²)

this price they regularly occupy 8 Shows that for S$ in will night, A Motel Charges $65 for a room per mant, and at 8 rooms. Research every price rarse more room be vacant. a) Determine demand function Men part al to find the price & revenure are occupoed. rooms C) Calevate when marginal revene is zero. Find out revenue at this time. of the vale find !) What is the sign Ricaurec in 5.c. Hidroy 250 (9 Use

Answers

a) To determine the demand function, let's assume that the motel has 100 rooms in total. If they charge $65 per night for a room, then their total revenue for a fully occupied motel would be:

Total Revenue = Price x Quantity

Total Revenue = $65 x 100

Total Revenue = $6,500

Now let's say they increase their price to $70 per night. Let's assume that at $70 per night, only 90 rooms are occupied. Then their total revenue would be:

Total Revenue = Price x Quantity

Total Revenue = $70 x 90

Total Revenue = $6,300

Repeating this process for different price points;

| Price | Quantity |

| 65 | 100 |

| 70 | 90 |

| 75 | 80 |

| 80 | 70 |

| 85 | 60 |

| 90 | 50 |

Using this data, we can estimate the demand function using linear regression:

Quantity = a - b x Price, where "a" is the intercept and "b" is the slope. Using Excel or a similar tool, we can calculate these values as:

a = 145

b = 2

Therefore, the demand function for this motel is:

Quantity = 145 - 2 x Price

To find out what price will maximize revenue, we need to differentiate the revenue function with respect to price and set it equal to zero:

Revenue = Price x Quantity

Revenue = Price (145 - 2 x Price)

dRevenue/dPrice = 145 - 4 x Price

Setting dRevenue/dPrice equal to zero and solving for Price, we get:

145 - 4 x Price = 0

Price = 36.25

Therefore, the price that maximizes revenue is $36.25 per night. To find out how many rooms will be occupied at this price point, substitute demand function:

Quantity = 145 - 2 x Price

Quantity = 145 - 2 x 36.25

Quantity = 72.5

Therefore, at a price of $36.25 per night, approximately 73 rooms will be occupied.

b) To calculate the revenue when marginal revenue is zero, we need to find the price that corresponds to this condition. Marginal revenue is the derivative of total revenue with respect to quantity:

Marginal Revenue = dRevenue/dQuantity

We know that marginal revenue is zero when revenue is maximized, so we can use the price we found in part a) to calculate revenue:

Revenue = Price x Quantity

Revenue = $36.25 x 72.5

Revenue = $2,625.63

Therefore, when marginal revenue is zero, the motel's revenue is approximately $2,625.63.

c) The sign of the derivative of marginal revenue with respect to quantity tells us whether revenue is increasing or decreasing as quantity increases. If the derivative is positive, then revenue is increasing; if it's negative, then revenue is decreasing; and if it's zero, then revenue is at a maximum or minimum point.

To find the derivative of marginal revenue with respect to quantity, we need to differentiate the demand function twice:

Quantity = 145 - 2 x Price

dQuantity/dPrice = -2

d^2Quantity/dPrice^2 = 0

Using these values, we can calculate the derivative of marginal revenue with respect to quantity as:

dMarginal Revenue/dQuantity = -2 x (d^2Revenue/dQuantity^2)

Since d^2Revenue/dQuantity^2 is zero, we know that dMarginal Revenue/dQuantity is also zero. Therefore, revenue is at a maximum point when marginal revenue is zero.

To know more about demand function refer here:

https://brainly.com/question/28198225#

#SPJ11

HELP DUE TODAY 50 POINTS!!!!!!!!!

Answers

[tex]\textit{arc's length}\\\\ s = \cfrac{\theta \pi r}{180} ~~ \begin{cases} r=radius\\ \theta =\stackrel{degrees}{angle}\\[-0.5em] \hrulefill\\ r=26\\ \theta =265 \end{cases}\implies s=\cfrac{(265)\pi (26)}{180}\implies s\approx 120~in[/tex]

The distance the tip of the bat travels is approximately 12.135 inches.

To find the distance the tip of the bat travels, we need to calculate the length of the arc.

The formula to calculate the length of an arc in a circle is:

Arc length = (θ/360) × 2πr

where θ is the angle in degrees, r is the radius.

Given:

Radius (r) = 26 inches

Angle (θ) = 265°

Let's substitute these values into the formula to find the arc length:

Arc length = (265/360) × 2π × 26

To calculate this, we first convert the angle from degrees to radians:

θ (in radians) = (θ × π) / 180

θ (in radians) = (265 × 3.14159) / 180

Now, we can substitute the values and calculate the arc length:

Arc length = (265/360) × 2 × 3.14159 × 26

Arc length ≈ 0.7346 × 6.28318 × 26

Arc length ≈ 12.135 inches (rounded to three decimal places)

Therefore, the distance the tip of the bat travels is approximately 12.135 inches.

Learn more about arc length click;

https://brainly.com/question/31762064

#SPJ1

The volume of the milk produced in a single milking session by a certain breed of cow is
Normally distributed with mean 2.3 gallons with a standard deviation of 0.96 gallons.
Part A Calculate the probability that a randomly selected cow produces between 2.0
gallons and 2.5 gallons in a single milking session. (4 points)
Part B A small dairy farm has 20 of these types of cows. Calculate the probability that the total volume for one milking session for these 20 cows exceeds 50 gallons. (8 points)
Part C Did you need to know that the population distribution of milk volumes per
milking session was Normal in order to complete Parts A or B? Justify your answer.

Answers

Part A: the probability that a cow produces between 2.0 and 2.5 gallons is approximately 0.6826.

Part B: To calculate the probability that the total volume for one milking session for 20 cows exceeds 50 gallons, we need additional information about the correlation or independence of the milk volumes of the 20 cows.

Part A: To calculate the probability that a randomly selected cow produces between 2.0 and 2.5 gallons in a single milking session, we can use the normal distribution. We calculate the z-scores for the lower and upper bounds and then find the area under the curve between these z-scores. Using the mean of 2.3 gallons and standard deviation of 0.96 gallons, we can calculate the z-scores as (2.0 - 2.3) / 0.96 = -0.3125 and (2.5 - 2.3) / 0.96 = 0.2083, respectively. By looking up these z-scores in the standard normal distribution table or using a calculator, we can find the corresponding probabilities.

Part B: To calculate the probability that the total volume for one milking session for 20 cows exceeds 50 gallons, we need to consider the distribution of the sum of 20 independent normally distributed random variables. We can use the properties of the normal distribution to find the mean and standard deviation of the sum of these variables and then calculate the probability using the normal distribution.

Part C: Yes, we needed to know that the population distribution of milk volumes per milking session was normal in order to complete Parts A and B. The calculations in both parts rely on the assumption of a normal distribution to determine the probabilities. If the distribution were not normal, different methods or assumptions would be required to calculate the probabilities accurately.

Learn more about probability here:

https://brainly.com/question/31828911

#SPJ11








4. Use the Lagrange multiplier method to find the maximum of the function f(x, y) = 3x + 4y subject to the constraint x + 7y2 =1.

Answers

Using the Lagrange multiplier method, we can find the maximum of the function f(x, y) = 3x + 4y subject to the constraint x + 7y^2 = 1.

To find the maximum of the function, we need to introduce a Lagrange multiplier λ and set up the following system of equations:

∇f = λ∇g

g(x, y) = 0

Here, ∇f represents the gradient of the function f(x, y), and ∇g represents the gradient of the constraint function g(x, y). In this case, the gradients are:

∇f = (3, 4)

∇g = (1, 14y)

Setting up the equations, we have:

3 = λ

4 = 14λy

x + 7y^2 - 1 = 0

From the second equation, we can solve for λ as λ = 4 / (14y). Substituting this value into the first equation, we get 3 = (4 / (14y)). Solving for y, we find y = 2 / 7. Plugging this value into the constraint equation, we can solve for x: x = 1 - 7(2 / 7)^2 = 9 / 14. Therefore, the maximum of the function f(x, y) = 3x + 4y subject to the constraint x + 7y^2 = 1 occurs at the point (9/14, 2/7).

The maximum value of the function f(x, y) = 3x + 4y subject to the constraint x + 7y^2 = 1 is obtained at the point (9/14, 2/7) with a maximum value of (3 * (9/14)) + (4 * (2/7)) = 27/14 + 8/7 = 34/7. The Lagrange multiplier method allows us to find the maximum by incorporating the constraint into the optimization problem using Lagrange multipliers and solving the resulting system of equations.

Learn more about Lagrange multiplier method here: brainly.com/question/30776684

#SPJ11

The demand for a particular item is given by the function D(x) = 2,000 - 3x? Find the consumer's surplus if the equilibrium price of a unit $125. The consumer's surplus is $| TIP Enter your answer as an integer or decimal number

Answers

The consumer's surplus for one unit of the item is $1,872, representing the additional value gained by consumers when purchasing the item at a price below the equilibrium price.

To find the consumer's surplus, we need to calculate the area between the demand curve and the equilibrium price line. The demand function D(x) = 2,000 - 3x represents the relationship between the price and quantity demanded. The equilibrium price of $125 indicates the price at which the quantity demanded is equal to one unit. By evaluating the consumer's surplus, we can determine the additional value consumers receive from purchasing the item at a price lower than the equilibrium price. To calculate the consumer's surplus, we need to find the area between the demand curve and the equilibrium price line. In this case, the equilibrium price is $125, and we want to find the consumer's surplus for one unit of the item. The consumer's surplus represents the difference between the maximum price a consumer is willing to pay (indicated by the demand function) and the actual price paid (equilibrium price). To calculate the consumer's surplus, we first find the maximum price a consumer is willing to pay by substituting x = 1 (quantity demanded is one unit) into the demand function:

D(1) = 2,000 - 3(1) = 2,000 - 3 = 1,997

The consumer's surplus is then calculated as the difference between the maximum price a consumer is willing to pay and the actual price paid:

Consumer's Surplus = Maximum price - Actual price

= 1,997 - 125

= 1,872

Therefore, the consumer's surplus is $1,872, indicating the additional value consumers receive from purchasing the item at a price lower than the equilibrium price.

Learn more about demand function here:

https://brainly.com/question/28198225

#SPJ11

Find the flux of the vector field F = (y; – 2, 2) across the part of the plane z = 1+ 4x + 3y above the rectangle (0, 3) x (0,4) with upwards orientation

Answers

The flux of the vector field F = (y, -2, 2) across the part of the plane

z = 1+ 4x + 3y above the rectangle (0, 3) x (0,4) with upwards orientation is 96 Wb.

To find the flux of the vector field F = (y, -2, 2) across the given surface, we can use the surface integral formula. The flux (Φ) of a vector field across a surface S is given by:

Φ = ∬S F · dS

where F is the vector field, dS is the outward-pointing vector normal to the surface, and the double integral is taken over the surface S.

In this case, the surface S is the part of the plane z = 1 + 4x + 3y above the rectangle (0, 3) × (0, 4).

Let's parameterize the surface S. Let's introduce two parameters u and v to represent the coordinates on the rectangle. We can define the position vector r(u, v) = ( x(u, v), y(u, v), z(u, v) ) as follows:

x(u, v) = u

y(u, v) = v

z(u, v) = 1 + 4u + 3v

Next, we calculate the partial derivatives of r(u, v) with respect to u and v:

∂r/∂u = (1, 0, 4)

∂r/∂v = (0, 1, 3)

Now, we can calculate the cross product of the partial derivatives:

∂r/∂u × ∂r/∂v = (-4, -3, 1)

The magnitude of this cross product is the area of the parallelogram defined by ∂r/∂u and ∂r/∂v, which is √((-4)^2 + (-3)^2 + 1^2) = √26.

To find the flux Φ, we integrate the dot product of F and the outward-pointing vector dS over the surface S:

Φ = ∬S F · dS = ∬S (y, -2, 2) · (∂r/∂u × ∂r/∂v) du dv

Since the outward-pointing vector is ∂r/∂u × ∂r/∂v = (-4, -3, 1), we have:

Φ = ∬S (y, -2, 2) · (-4, -3, 1) du dv

  = ∬S (-4y + 6 + 2) du dv

  = ∬S (-4y + 8) du dv

The limits of integration are u = 0 to 3 and v = 0 to 4, representing the rectangle (0, 3) × (0, 4). Therefore, the integral becomes:

Φ = ∫₀³ ∫₀⁴ (-4y + 8) dv du

Now, let's evaluate the integral:

Φ = ∫₀³ ∫₀⁴ (-4y + 8) dv du

  = ∫₀³ [-4yv + 8v]₀⁴ du

  = ∫₀³ (-16y + 32) du

  = [-16yu + 32u]₀³

  = -48y + 96

Finally, we substitute the limits of integration for y:

Φ = -48y + 96 = -48 *4  + 96 = -192 + 96 = -96

Thus, the required flux is 96 Wb

To know more about flux : https://brainly.com/question/10736183

#SPJ11

a spinner is divided into five colored sections that are not of equal size: red, blue, green, yellow, and purple. the spinner is spun several times, and the results are recorded below: spinner results color frequency red 10 blue 12 green 2 yellow 19 purple 12 if the spinner is spun 1000 more times, about how many times would you expect to land on purple? round your answer to the nearest whole number.

Answers

Based on the recorded results, purple appeared 12 times out of a total of 55 spins. If the spinner is spun 1000 more times, we can estimate that purple would appear approximately 218 times.

In the recorded results, the spinner was spun a total of 55 times, with purple appearing 12 times. To estimate the expected frequency of purple in 1000 additional spins, we can calculate the probability of landing on purple based on the recorded frequencies. The probability of landing on purple can be calculated by dividing the frequency of purple (12) by the total number of spins (55):

Probability of landing on purple = Frequency of purple / Total number of spins = 12 / 55

We can use this probability to estimate the expected frequency of purple in the additional 1000 spins:

Expected frequency of purple = Probability of landing on purple * Total number of additional spins

≈ (12 / 55) * 1000

≈ 218

Therefore, based on this estimation, we would expect purple to appear approximately 218 times if the spinner is spun 1000 more times.

Learn more about Probability here:

https://brainly.com/question/32560116

#SPJ11

= (#2) [4 pts.] Evaluate the directional derivative Duf (3, 4) if f (x,y) = V x2 + y2 and u is the unit vector in the same direction as (1, -1).

Answers

The directional derivative duf at the point (3, 4) for the function f(x, y) = x² + y², with u being the unit vector in the same direction as (1, -1), is -sqrt(2).

to evaluate the directional derivative, denoted as duf, of the function f(x, y) = x² + y² at the point (3, 4), where u is the unit vector in the same direction as (1, -1), we need to find the dot product between the gradient of f at the given point and the unit vector u.

let's calculate it step by step:

step 1: find the gradient of f(x, y).

the gradient of f(x, y) is given by the partial derivatives of f with respect to x and y. let's calculate them:

∂f/∂x = 2x

∂f/∂y = 2yso, the gradient of f(x, y) is ∇f(x, y) = (2x, 2y).

step 2: normalize the vector (1, -1) to obtain the unit vector u.

to normalize the vector (1, -1), we divide it by its magnitude:

u = sqrt(1² + (-1)²) = sqrt(1 + 1) = sqrt(2)

u = (1/sqrt(2), -1/sqrt(2)) = (sqrt(2)/2, -sqrt(2)/2)

step 3: evaluate duf at the point (3, 4).

to find the directional derivative, we take the dot product of the gradient ∇f(3, 4) = (6, 8) and the unit vector u = (sqrt(2)/2, -sqrt(2)/2):

duf = ∇f(3, 4) · u = (6, 8) · (sqrt(2)/2, -sqrt(2)/2)

= (6 * sqrt(2)/2) + (8 * -sqrt(2)/2)

= 3sqrt(2) - 4sqrt(2)

= -sqrt(2)

Learn more about function here:

https://brainly.com/question/30721594

#SPJ11

Cost, revenue, and profit are in dollars and x is the number of units. Suppose that the total revenue function is given by R(x) = 47x and that the total cost function is given by C(x) = 90 + 30x + 0.1

Answers

The profit function is P(x) = 17x - 90 - 0.1x.

The given function of total revenue is R(x) = 47x, and the total cost function is C(x) = 90 + 30x + 0.1x.

We can calculate profit as the difference between total revenue and total cost. So, the profit function P(x) can be expressed as follows: P(x) = R(x) - C(x)

Now, substituting R(x) and C(x) in the above equation, we have: P(x) = 47x - (90 + 30x + 0.1x)P(x) = 47x - 90 - 30x - 0.1xP(x) = 17x - 90 - 0.1x

Let's check the expression for profit: When x = 0, P(x) = 17(0) - 90 - 0.1(0) = -90 When x = 100, P(x) = 17(100) - 90 - 0.1(100) = 1610 - 90 - 10 = 1510

Therefore, the profit function is P(x) = 17x - 90 - 0.1x.

To know more about profit function, visit:

https://brainly.com/question/16458378#

#SPJ11

Solve the boundary-value problem y'' – 8y' + 16y=0, y(0) = 2, y(1) = 0.

Answers

The solution for the boundary-value problem is y(x) = 2[tex]e^{(4x)}[/tex] × (1 - x).

How do we solve the boundary-value problem?

The given differential equation y'' – 8y' + 16y = 0 is a second-order homogeneous linear differential equation with constant coefficients.

The characteristic equation of this differential equation⇒r² - 8r + 16 = 0

This can be factored as (r - 4)² = 0 ∴⇒r = 4.

general solution ⇒ y(x) = (A(x) + B) × [tex]e^{(4x)}[/tex]

A and B are constants.

Now, we'll use the boundary conditions y(0) = 2 and y(1) = 0 to solve for A and B.

For the first boundary condition y(0) = 2:

2 = (A0 + B)× [tex]e^{(4*0)}[/tex]

2 = B

Substitute B = 2 into general solution:

y(x) = Ax × [tex]e^{(4x)}[/tex] + 2 × [tex]e^{(4x)}[/tex]

y(x) = [tex]e^{(4x)}[/tex] × (Ax + 2)

For the second boundary condition y(1) = 0:

0 =  [tex]e^{(4*1)}[/tex] × (A1 + 2)

0 = e⁴ × (A + 2)

As  e⁴ ≠ 0, we can solve for A:

A = -2

So the solution to the boundary value problem is:

y(x) =  [tex]e^{(4x)}[/tex]  × (-2x + 2) ⇒ y(x) = 2 [tex]e^{(4x)}[/tex] × (1 - x)

Find more exercises on boundary-value problem;

https://brainly.com/question/30899491

#SPJ1

Consider the parallelogram with vertices A = (1,1,2), B = (0,2,3), C = (2,6,1), and D=(-1,0 +3,4), where e is a real valued constant (a) (5 points) Use the cross product to find the area of parallelogram ABCD as a function of c. (b) (3 points) For c = -2, find the parametric equations of the line passing through D and perpendicular to the parallelogram ABCD

Answers

(a) The area of parallelogram ABCD as a function of c can be found using the cross product of the vectors AB and AD. The magnitude of the cross product gives the area of the parallelogram.

(b) For c = -2, the parametric equations of the line passing through D and perpendicular to the parallelogram ABCD can be determined by finding the direction vector of the line, which is orthogonal to the normal vector of the parallelogram, and using the point D as the initial point.

(a) To find the area of parallelogram ABCD, we first calculate the vectors AB = B - A and AD = D - A. Then, we take the cross product of AB and AD to obtain the normal vector of the parallelogram. The magnitude of the cross product gives the area of the parallelogram as a function of c.

(b) To find the parametric equations of the line passing through D and perpendicular to the parallelogram ABCD, we use the normal vector of the parallelogram as the direction vector of the line. We start with the point D and add t times the direction vector to get the parametric equations, where t is a parameter representing the distance along the line. For c = -2, we substitute the value of c into the normal vector to obtain the specific direction vector for this case.

Learn more about area of parallelogram:

https://brainly.com/question/28163302

#SPJ11

1. Determine if the lines with symmetric equations *73 - 972-25 and Item - 24 are the same. x- 4 X+1 + 9 -14 = -3 Explain your answer. 14

Answers

the lines with symmetric equations *73 - 972-25 and Item - 24 are not the same, and so does x- 4 X+1 + 9 -14 = -3.

To determine if the lines with symmetric equations 73 - 972-25 and Item - 24 are the same, we need to convert them into Cartesian equations.

For 73 - 972-25, we have:

x = 7
y = 3

For Item - 24, we have:

x = -2
y = 4

So these two lines have different Cartesian equations and therefore are not the same.

As for the second part of the question, the symmetric equation x-4 X+1 + 9-14 = -3 can be simplified to:

x - 3 = 0

This is the equation of a vertical line passing through the point (3, 0). So it is not the same as the first two lines we considered.

To know more about Cartesian visit:

https://brainly.com/question/27927590

#SPJ11

Use the substitution formula to evaluate the integral. 4 r dr 14+2 O 2V6-4 0-246 +4 o Ovo 1 O √6.2

Answers

The value of the integral ∫(4r / √(14+2r^2)) dr is 2√(14+2r^2) + C.

To evaluate the integral ∫(4r / √(14+2r^2)) dr, we can use the substitution method. Let's make the substitution u = 14 + 2r^2. To find the differential du, we take the derivative of u with respect to r: du = 4r dr. Rearranging this equation, we have dr = du / (4r).

Substituting the values into the integral, we get: ∫(4r / √(14+2r^2)) dr = ∫(du / √u).

Now, the integral becomes ∫(1 / √u) du. We can simplify this integral by using the power rule of integration, which states that the integral of x^n dx equals (x^(n+1) / (n+1)) + C, where C is the constant of integration.

Applying the power rule, we have: ∫(1 / √u) du = 2√u + C. Substituting the original variable back in, we have:2√(14+2r^2) + C. Therefore, the value of the integral ∫(4r / √(14+2r^2)) dr is 2√(14+2r^2) + C.

To know more about integration , refer here :

https://brainly.com/question/31744185#

#SPJ11

By recognizing each series below as a Taylor series evaluated at
a particular value of x, find the sum of each convergent series. A.
4−433!+455!−477!+⋯+(−1)42+1(2+1)!+⋯= B.
1�
(5 points) By recognizing each series below as a Taylor series evaluated at a particular value of x, find the sum of each convergent series. A. 4 43 3! - 45 (-1)"42n+1 + - 47 7! + + + = 5! (2n+1)! B.

Answers

To find the sum of each convergent series by recognizing them as Taylor series evaluated at a particular value of x.the sum of the series is sin(π/4).

we need to identify the function represented by the series and the center of the series. Then, we can use the formula for the sum of a Taylor series to find the sum.

A. Let's analyze the series:

4 - 4/3! + 4/5! - 4/7! + ...

Recognizing this series as a Taylor series, we can see that it represents the function f(x) = sin(x) evaluated at x = π/4.

The Taylor series expansion of sin(x) centered at x = π/4 is given by:

[tex]sin(x) = (x - π/4) - (1/3!)(x - π/4)^3 + (1/5!)(x - π/4)^5 - (1/7!)(x - π/4)^7 + .[/tex]

To know more about series click the link below:

brainly.com/question/6953942

#SPJ11

help me please i don't have enough time
Let A and B be two matrices of size 4 x 4 such that det(A) = 3. If B is a singular matrix then det(2A-2B7) + 2 = -1 2 None of the mentioned 1

Answers

The value of det(2A-2B7) + 2 is 50.

To determine the value of the expression det(2A-2B7) + 2, we need to consider the properties of determinants and the given information.

Determinant of a Scalar Multiple:

For any matrix A and a scalar k, the determinant of the scalar multiple kA is given by det(kA) = k^n * det(A), where n is the size of the matrix. In this case, A is a 4x4 matrix, so det(2A) = (2^4) * det(A) = 16 * 3 = 48.

Determinant of a Sum/Difference:

The determinant of the sum or difference of two matrices is the sum or difference of their determinants. Therefore, det(2A-2B7) = det(2A) - det(2B7) = 48 - det(2B7).

Singular Matrix:

A singular matrix is a square matrix whose determinant is zero. In this case, B is given as a singular matrix. Therefore, det(B) = 0.

Now, let's analyze the expression det(2A-2B7) + 2:

det(2A-2B7) + 2 = 48 - det(2B7) + 2

Since B is a singular matrix, det(B) = 0, so:

det(2A-2B7) + 2 = 48 - det(2B7) + 2 = 48 - (2^4) * det(B7) + 2

= 48 - 16 * 0 + 2 = 48 + 2 = 50.

Therefore, the value of det(2A-2B7) + 2 is 50.

To know more about matrices, visit the link : https://brainly.com/question/11989522

#SPJ11

Determine the local max and min of if any exists. f(x)= x f(x)₂. 42+1

Answers

To determine the local maxima and minima of the function f(x) = x^2 + 1, we need to find the critical points and analyze the behavior of the function around those points.

First, let's find the derivative of f(x) with respect to x:

f'(x) = 2x.

To find the critical points, we set f'(x) = 0 and solve for x:

2x = 0,

x = 0.

So the only critical point of the function is x = 0.

Next, we can analyze the behavior of the function around x = 0. Since the derivative is 2x, we can observe that:

- For x < 0, f'(x) < 0, indicating that the function is decreasing.

- For x > 0, f'(x) > 0, indicating that the function is increasing.

From this information, we can conclude that the function has a local minimum at x = 0. At this point, f(0) = (0)^2 + 1 = 1.

Therefore, the function f(x) = x^2 + 1 has a local minimum at x = 0, and there are no local maxima.

Learn more about derivatives here: brainly.com/question/29144258

#SPJ11

let f(x) be the function f(x)={x2−c4x 5cfor x<5,for x≥5. find the value of c that makes the function continuous. (use symbolic notation and fractions where needed.) c=

Answers

The value of c that makes the function f(x) continuous is c = 25/4.

To find the value of c that makes the function f(x) continuous, we need to ensure that the function is continuous at x = 5. For a function to be continuous at a point, the left-hand limit and the right-hand limit at that point must be equal, and the value of the function at that point must also be equal to the limit.

For x < 5, the function is given by f(x) = x^2 - c/4x. To find the left-hand limit as x approaches 5, we substitute x = 5 into the function and simplify: lim(x→5-) f(x) = lim(x→5-) (x^2 - c/4x) = 5^2 - c/4 * 5 = 25 - 5c/4.

For x ≥ 5, the function is given by f(x) = c. To find the right-hand limit as x approaches 5, we substitute x = 5 into the function: lim(x→5+) f(x) = lim(x→5+) c = c.

To make the function continuous at x = 5, we equate the left-hand limit and the right-hand limit and set them equal to the value of the function at x = 5: 25 - 5c/4 = c. Solving this equation for c, we find c = 25/4. Therefore, the value of c that makes the function f(x) continuous is c = 25/4.

Learn more about equation here:

https://brainly.com/question/29657983

#SPJ11

The value of c that makes the function continuous is c = 5/6.

To find the value of c that makes the function continuous, we need to ensure that the two pieces of the function, defined for x < 5 and x ≥ 5, match at x = 5.

First, let's evaluate f(x) = x² - c when x < 5 at x = 5:

f(5) = (5)² - c

= 25 - c

Next, let's evaluate f(x) = 4x + 5c when x ≥ 5 at x = 5:

f(5) = 4(5) + 5c

= 20 + 5c

Since the function should be continuous at x = 5, the values of f(x) from both pieces should be equal.

Therefore, we set them equal to each other and solve for c:

25 - c = 20 + 5c

Let's simplify the equation:

25 - 20 = 5c + c

5 = 6c

Dividing both sides by 6:

c = 5/6

So, the value of c that makes the function continuous is c = 5/6.

Learn more about continuous function click;

https://brainly.com/question/28228313

#SPJ4

Complete question =

Let f(x) be the piecewise function

f(x) = {x²-c for x < 5,

        4x+5c for x≥5}

find the value of c that makes the function continuous. (use symbolic notation and fractions where needed.)

Find the arc length of y=((x+2)/2)^4+1/(2(x+2)^2) over [1,4].
(Give an exact answer. Use symbolic notation and fractions where needed.)
Arc length =?

Answers

The exact arc length of the curve over the interval [1, 4] is 11/24.

To find the arc length of the given curve y = ((x + 2)/2)^4 + 1/(2(x + 2)^2) over the interval [1, 4], we can use the arc length formula for a function f(x) on the interval [a, b]:

L = ∫[a,b] √(1 + (f'(x))^2) dx

First, let's find the derivative of the function y = ((x + 2)/2)^4 + 1/(2(x + 2)^2):

y' = 4((x + 2)/2)^3 * (1/2) + (-1)(1/(2(x + 2)^2))^2 * 2/(x + 2)^3

= 2(x + 2)^3/16 - 1/(2(x + 2)^3)

= (2(x + 2)^6 - 8)/(16(x + 2)^3)

Now, we can substitute the derivative into the arc length formula and evaluate the integral:

L = ∫[1,4] √(1 + ((2(x + 2)^6 - 8)/(16(x + 2)^3))^2) dx

Simplifying the integrand:

L = ∫[1,4] √(1 + ((2(x + 2)^6 - 8)/(16(x + 2)^3))^2) dx

= ∫[1,4] √(1 + (2(x + 2)^6 - 8)^2/(16^2(x + 2)^6)) dx

= ∫[1,4] √(1 + (2(x + 2)^6 - 8)^2/256(x + 2)^6) dx

= ∫[1,4] √((256(x + 2)^6 + (2(x + 2)^6 - 8)^2)/(256(x + 2)^6)) dx

= ∫[1,4] √((256(x + 2)^6 + 4(x + 2)^12 - 32(x + 2)^6 + 64)/(256(x + 2)^6)) dx

= ∫[1,4] √((4(x + 2)^12 + 224(x + 2)^6 + 64)/(256(x + 2)^6)) dx

= ∫[1,4] √((4(x + 2)^6 + 8)^2/(256(x + 2)^6)) dx

= ∫[1,4] (4(x + 2)^6 + 8)/(16(x + 2)^3) dx

= 1/4 ∫[1,4] ((x + 2)^3 + 2)/(x + 2)^3 dx

= 1/4 ∫[1,4] (1 + 2/(x + 2)^3) dx

Now, we can integrate the expression:

L = 1/4 ∫[1,4] (1 + 2/(x + 2)^3) dx

= 1/4 [x + -1/(x + 2)^2] | [1,4]

= 1/4 [(4 + -1/6) - (1 + -1/3)]

= 1/4 (4 - 1/6 - 1 + 1/3)

= 1/4 (12/3 - 1/6 - 6/6 + 2/6)

= 1/4 (12/3 - 5/6)

= 1/4 (8/2 - 5/6)

= 1/4 (16/4 - 5/6)

= 1/4 (11/6)

= 11/24

Therefore, 11/24 is the exact arc length of the curve over the interval [1, 4].

To learn more about arc, refer below:

https://brainly.com/question/31612770

#SPJ11

state the period, phase shift, amplitude and vertical shift of the given function. Graph one cycle of the function. 1. y = 3sin(x) 2. y = sin(3x) 3. y=-2 cos(x) 7T 4. y = cos ) 5."

Answers

y = 3sin(x): Period = 2π, Phase shift = 0, Amplitude = 3, Vertical shift = 0

y = sin(3x): Period = 2π/3, Phase shift = 0, Amplitude = 1, Vertical shift = 0

y = -2cos(x): Period = 2π, Phase shift = 0, Amplitude = 2, Vertical shift = 0

y = cos(5x): Period = 2π/5, Phase shift = 0, Amplitude = 1, Vertical shift = 0

For y = 3sin(x), the period is 2π, meaning it completes one cycle in 2π units. There is no phase shift (0), and the amplitude is 3, which determines the vertical stretch or compression of the graph. The vertical shift is 0, indicating no upward or downward shift from the x-axis.

For y = sin(3x), the period is shortened to 2π/3, indicating a faster oscillation. There is no phase shift (0), and the amplitude remains 1. The vertical shift is 0.

For y = -2cos(x), the period is 2π, same as the regular cosine function. There is no phase shift (0), and the amplitude is 2, determining the vertical stretch or compression. The vertical shift is 0.

For y = cos(5x), the period is shortened to 2π/5, indicating a faster oscillation. There is no phase shift (0), and the amplitude remains 1. The vertical shift is 0.


To learn more about phase shift click here: brainly.com/question/23936548

#SPJ11

Let V be an inner product space, and let u, v E V be unit vectors. Is it possible that (u, v) < -1? O a. No O b. Yes

Answers

(u, v) ≥ -1. The inner product of two unit vectors can't be less than -1.Therefore, the answer is option a. No.

Given: V is an inner product space, and let u, v E V be unit vectors.

We need to determine if it is possible that (u, v) < -1.

Answer: a. NoIt is not possible that (u, v) < -1.

The inner product of two vectors lies between -1 and 1, inclusive. We can prove it as follows:

Since u, v are unit vectors, we have:|u| = ||u|| = √(u, u) = 1|v| = ||v|| = √(v, v) = 1

Also,(u - v)² ≥ 0(u, u) - 2(u, v) + (v, v) ≥ 0 1 - 2(u, v) + 1 ≥ 0 (u, v) ≤ 1

Hence, (u, v) ≥ -1. The inner product of two unit vectors can't be less than -1.

Therefore, the answer is option a. No.

Learn more about vectors :

https://brainly.com/question/24256726

#SPJ11

Other Questions
Evaluate the indefinite integral. (Use C for the constant of integration.) X5 sin(1 + x7/2) dx + _________ are dedicated computers that can hold actual database. f(4+h)-f(4) Find lim h h-0 if f(x) = x + 5. + f(4+h) f(4) lim h h-0 (Simplify your answer.) The set {(1, 4, 6),(1, 5, 8) (2,1,1)(0,1,0)} is a linearly independent subset of r3. A survey asked families with 1, 2, 3, or 4 children how much they planned to spend on vacation this summer. The data collected by the survey are shown in the table.What is the probability that a family with 3 children is budgeting to spend more than $3,000 on vacation? Round your answer to the nearest hundredth, like this: 0.42 (Its not B)A. 0.30B. 0.19 (not this one)C. 0.06D. 0.26 how do retailers add value to the products bought by consumers? please check out and research 2 retailers on-line and discover what they are doing to add value online and in local store. Solve the separable differential equation dor 7 dt 2 and find the particular solution satisfying the initial condition z(0) = 4. = z(t) = Question Help: Video Post to forum Add Work Submit Question Question 6 B0/1 pt 32 Details Solve dy dt = 5(y - 10), y(0) = 7 y(t)= Perdaris Enterprises had an expenditure rate ofE' (x) = e'. * dollars per day and an income rate of I'(x) = 98.8 - Is dollars per day on a particular job, where r was the number of days from the start of the job. The company's profit on that job will equal total income less total expendi- tures. Profit will be maximized if the job ends at the optimum time, which is the point where the two curves meet. Find thefollowing.(a) The optimum number of days for the job to last(b) The total income for the optimum number of days(c) The total expenditures for the optimum number of days(d) The maximum profit for the job the only non-plant source of carbohydrates are foods derived from Complete the following sentence:During the secretory phase of the menstrual cycle .- the Graafian follicle forms- LH reaches its highest levels- progesterone levels are at their highest- estrogen reaches its highest levels Effective leader behaviors can be systematically improved and developed. true false After 55 years, what mass (in g) remains of a 200.0 g sample of a radioactive isotope with a half-life of 10.0 years? a) 170 g b) 4.4 g c) 0.22 g d) 51 g crossover youth who are receiving services from both the juvenile justice and dependency courts simultaneously are referred to as dually adjudicated youth. A machine can be purchased for $160,000 and used for five years, yielding the following income. This income computation includes annual depreciation expense of $32,000. Year 1 Year 2 Year 4 Year 5 Year 3 $57,000 Income $10,700 $26,700 $40,100 $106,800 Compute the machine's payback period. (Round payback period answer to 2 decimal places.) Year Net Income Depreciation Net Cash Flow Cumulative Net Cash Flow Initial invest $ $ (160,000) Year 1 $ 10,700 Year 2 26,700 Year 3 57,000 Year 4 40,100 0 Year 5 106,800 0 Payback period (160,000) which is the most significant ethical pitfall of entrepreneurship create an outline that organizes the major events of Samuel Beckett's Endgame into a traditional five-act structure. Your outline must include explanations for why you chose the events you did in each act. ACT IExplanation:Events:[first event][second event]ACT IIExplanation:Events: how would a taxpayer calculate the california itemized deduction limitation a) The speed of a motor supplied with a voltage input of 30V, assuming the system is without damping, can be expressed as: 30 = (0.02)+(0.06)w dt If the initial speed is zero and a step size of h = 0. a string is wound around a uniform disk of radius r and mass m which of the following pairs is correct? group of answer choices equatorial attack is from above; axial attack is from below axial attack is from below; equatorial attack is from above axial attack is from the side; equatorial attack is from below equatorial attack is from below; axial attack is from above