how many calories are required to raise 125g of water from 24.0 oc to 42.5 oc?
a) 9.68 x 103 cal. b) 2.31 x 103 cal. c) 1.25 x 102 cal. d) 1.44 x 102 cal.

Answers

Answer 1

It takes 2.31 * 10^{3} calories to raise 125g of water from 24.0 oc to 42.5 oc.

We need to use the formula Q = mCΔT, where Q is the amount of heat transferred, m is the mass of the substance, C is the specific heat capacity, and ΔT is the change in temperature. In this case, we have a mass of 125g and a change in temperature of 18.5 oc (42.5 oc - 24.0 oc).
First, we need to determine the specific heat capacity of water, which is 1 calorie/gram °C. Then, we can plug in the values:
Q = (125g) * (1 cal/g °C) * (18.5 °C)
Q = 2312.5 calories
Therefore, the answer is b) 2.31 * 10^{3} cal. It takes 2.31 * 10^{3} calories to raise 125g of water from 24.0 oc to 42.5 oc.

learn more about specific heat capacity Refer: https://brainly.com/question/28302909

#SPJ11


Related Questions

What is the [H3O+] and the pH of a benzoic acid-benzoate buffer that consists of 0.17 M C6H5COOH and 0.27 M C6H5COONa? (Ka of benzoic acid = 6.3 × 10−5) Be sure to report your answer to the correct number of significant figures.
[H3O+] = __× 10 __M
pH =

Answers

The answer to the correct number of significant figures is pH = 4.9

To find the [H3O+] and pH of the benzoic acid-benzoate buffer, we need to use the Henderson-Hasselbalch equation:
pH = pKa + log([A-]/[HA])
where pKa is the dissociation constant of benzoic acid, [A-] is the concentration of the benzoate ion, and [HA] is the concentration of the undissociated benzoic acid.
First, we need to calculate the ratio of [A-]/[HA].
Ka = [H3O+][A-]/[HA]
Let x be the concentration of H3O+ and assume that x << [HA]. Then we can simplify the equation to:
Ka = x^2 / (0.17 - x)
Rearranging and solving for x gives:
x = sqrt(Ka*[HA])
x = sqrt((6.3 x 10^-5) * (0.17))
x = 1.66 x 10^-3 M
Now we can calculate the ratio of [A-]/[HA]:
[A-]/[HA] = 0.27 / 0.17 = 1.59
Plugging in the values into the Henderson-Hasselbalch equation:
pH = pKa + log([A-]/[HA])
pH = 4.80 + log(1.59)
pH = 4.93
So the pH of the benzoic acid-benzoate buffer is 4.93.
To find the [H3O+], we can use the relationship:
pH = -log([H3O+])
[H3O+] = 10^-pH
[H3O+] = 7.05 x 10^-5 M
Therefore, the [H3O+] is 7.05 x 10^-5 M.
Reporting the answer to the correct number of significant figures, we have:
[H3O+] = 7.1 x 10^-5 M
pH = 4.9

To know more about benzoic visit:

https://brainly.com/question/3186444

#SPJ11

how many liters of co2 at stp are produced when 112.2 g of c8h16 are burned? c8h16(g) o2 (g) --> co2(g) h2o (g)

Answers

When 112.2 g of C_{8}H_{16} is burned, 179.2 L of CO_{2} is produced at STP.

The balanced chemical equation for the combustion of C_{8}H_{16}:
C_{8}H_{16}(g) + 12O_{2}(g) → 8CO_{2}(g) + 8H_{2}O(g)
Now, we can determine the moles of C8H16 by using its molar mass:
Molar mass of C_{8}H_{16} = (8 * 12.01) + (16 * 1.01) = 112.2 g/mol
Moles of C_{8}H_{16} = \frac{mass }{ molar mass} = \frac{112.2 g }{ 112.2 g/mol} = 1 mol
From the balanced chemical equation, we can see that 1 mol of C_{8}H_{16} produces 8 mol of CO_{2}. So, we have:
Moles of  CO_{2} produced = 1 mol C_{8}H_{16} * (\frac{8 mol CO_{2} }{1 mol C_{8}H_{16}}) = 8 mol CO_{2}
Now, we can use the conditions of STP (standard temperature and pressure: 0°C and 1 atm) to find the volume of  CO_{2} produced. At STP, 1 mol of any gas occupies a volume of 22.4 L. So, the volume of  CO_{2} produced is:
Volume of  CO_{2} = 8 mol  CO_{2} * 22.4 L/mol = 179.2 L
This means that when 112.2 g of C_{8}H_{16} is burned, 179.2 L of  CO_{2} is produced at STP. Therefore, the correct answer is: b. 179 L

learn more about combustion Refer: https://brainly.com/question/13153771

#SPJ11

complete question:

How many liters of CO2 at STP are produced when 112.2 g of c8h16 are burned? c8h16(g) o2 (g) --> co2(g) h2o (g)

a. 22.4L

b. 179 L

c. 10 L

d. 80.0L

what is the poh of a solution with a hydroxide concentration of 0.33 m?

Answers

The pOH of a solution with a hydroxide concentration of 0.33 M is approximately 0.48.

The pOH is a measure of the concentration of hydroxide ions (OH-) in a solution. It is related to the pH of a solution through the equation pH + pOH = 14. Therefore, to find the pOH, we can subtract the negative logarithm of the hydroxide concentration from 14. In this case, the hydroxide concentration is 0.33 M. Taking the negative logarithm of 0.33, we get a pOH of approximately 0.48.

Hence, the pOH of the solution with a hydroxide concentration of 0.33 M is approximately 0.48.

learn more about hydroxide ions Refer: https://brainly.com/question/14576028

#SPJ11

potassium (k, atomic radius 280 pm) forms a body-centered cubic structure. what is the volume (in cm3) occupied by potassium in a unit cell?

Answers

The volume occupied by potassium in a unit cell of a body-centered cubic structure is approximately 31.26 cm^3.

In a body-centered cubic (BCC) structure, each atom is located at the corners of the cube and one atom is present at the center of the cube. The edge length of the cube (a) can be calculated using the atomic radius.

In a BCC structure, the relationship between the edge length (a) and the atomic radius (r) is given by:

a = 4 * r / √3

Given that the atomic radius of potassium (K) is 280 pm (picometers), we can convert it to centimeters by dividing by 100:

r = 280 pm / 100 = 2.80 cm

Substituting this value into the equation for the edge length, we have:

a = 4 * 2.80 cm / √3

To calculate the volume (V) occupied by potassium in a unit cell, we can use the formula:

V = a^3

Substituting the value of a into the equation, we get:

V = (4 * 2.80 cm / √3)^3

Evaluating this expression, we find:

V ≈ 31.26 cm^3

Know more about potassium here:

https://brainly.com/question/13321031

#SPJ11

explain, using words and net ionic equations, why there is a difference in ph

Answers

The difference in pH among strong acids, weak acids, and weak bases can be attributed to their varying degree of ionization or dissociation in water, which influences the concentration of hydrogen ions (H+) or hydroxide ions (OH-) present in the solution.

The difference in pH between strong acids, weak acids, and weak bases can be explained by their varying degree of ionization or dissociation in water. Strong acids fully dissociate in water to produce hydrogen ions (H+) and their corresponding conjugate base ions. This high concentration of hydrogen ions results in a low pH, indicating acidity.

For example, hydrochloric acid (HCl) is a strong acid that dissociates completely in water according to the equation:

HCl(aq) → H+(aq) + Cl-(aq)

On the other hand, weak acids partially dissociate in water, resulting in a lower concentration of hydrogen ions. This leads to a higher pH compared to strong acids. Acetic acid (CH3COOH) is an example of a weak acid that undergoes partial dissociation:

CH3COOH(aq) ⇌ H+(aq) + CH3COO-(aq)

Weak bases, on the other hand, accept hydrogen ions (H+) from water, resulting in the production of hydroxide ions (OH-) and their corresponding conjugate acid species. This leads to an increase in hydroxide ion concentration and a higher pH, indicating basicity.

For example, ammonia (NH3) is a weak base that reacts with water to form ammonium ions (NH4+) and hydroxide ions (OH-):

NH3(aq) + H2O(l) ⇌ NH4+(aq) + OH-(aq)

Know more about difference in pH here:

https://brainly.com/question/14843959

#SPJ11

he value of Eºcell for the following reaction is 0.500 V. 2Mn^3+ + 2H_2O -> Mn^2+ + MnO2 + 4H^+ What is the value of AG°_cell for this reaction? = ____ kJ

Answers

The value of ΔG°_cell for the given reaction can be calculated using the formula ΔG°_cell = -nFΔE°_cell, where n is the number of moles of electrons transferred and F is the Faraday constant. The value of ΔG°_cell for this reaction is approximately -193 kJ.

The given reaction is 2Mn^3+ + 2H_2O -> Mn^2+ + MnO2 + 4H^+. To calculate ΔG°_cell, we need to determine the number of moles of electrons transferred (n) and the value of ΔE°_cell.

From the balanced equation, we can see that 2 moles of electrons are transferred in the reaction. Therefore, n = 2.

Given that ΔE°_cell = 0.500 V, we can substitute these values into the formula:

ΔG°_cell = -nFΔE°_cell

ΔG°_cell = -(2)(96485 C/mol)(0.500 V)

ΔG°_cell ≈ -193 kJ

Therefore, the value of ΔG°_cell for this reaction is approximately -193 kJ.

learn more about reaction Refer: https://brainly.com/question/30464598

#SPJ11

balance the oxidation-reduction reaction below in acidic solution. clo−4 rb→clo−3 rb

Answers

To balance the oxidation-reduction reaction below in an acidic solution: Clo−4 + Rb → Clo−3 + Rb. The balanced equation for the oxidation-reduction reaction in an acidic solution is 2ClO−4 + 4Rb → 2ClO−3 + 4H+ + 4Rb+

Determine the oxidation states of each element:

The oxidation state of Cl changes from +7 to +5.

The oxidation state of Rb remains constant at +1.

Separate the reaction into two half-reactions, one for oxidation and one for reduction:

Oxidation half-reaction:

ClO−4 → ClO−3

Reduction half-reaction:

Rb → Rb+

Balance the atoms other than hydrogen and oxygen:

Oxidation half-reaction:

ClO−4 → ClO−3 + 2H+

Reduction half-reaction:

2Rb → 2Rb+

Balance the oxygen atoms by adding water (H2O):

Oxidation half-reaction:

ClO−4 + H2O → ClO−3 + 2H+

Reduction half-reaction:

2Rb → 2Rb+ + 2H2O

Balance the hydrogen atoms by adding H+ ions:

Oxidation half-reaction:

ClO−4 + H2O → ClO−3 + 2H+ + 2e−

Reduction half-reaction:

2Rb → 2Rb+ + 2H2O + 2e−

Balance the charges by adding electrons (e−):

Oxidation half-reaction:

ClO−4 + H2O → ClO−3 + 2H+ + 2e−

Reduction half-reaction:

2Rb → 2Rb+ + 2H2O + 2e−

Multiply the half-reactions to equalize the number of electrons:

Oxidation half-reaction:

2ClO−4 + 2H2O → 2ClO−3 + 4H+ + 4e−

Reduction half-reaction:

4Rb → 4Rb+ + 4H2O + 4e−

Combine the half-reactions:

2ClO−4 + 2H2O + 4Rb → 2ClO−3 + 4H+ + 4e− + 4Rb+ + 4H2O

2ClO−4 + 4Rb → 2ClO−3 + 4H+ + 4Rb+

To know more about an acidic solution

https://brainly.com/question/24255408

#SPJ11

What happens to the volume of a balloon if its temperature is decrease while keeping the pressure constant

Answers

The volume decreases
Explanation: the balloon shrinks due to temperature but by the pressure it will still be inflated

Which action gives the best method for neutralizing spilled acid?
a. add sodium bicarbonate to the spill
b. neutralize the spill with a strong base
c. pour water over the spill
d. mop up the spill with paper towels

Answers

The best method for neutralizing a spilled acid depends on the type of acid and the severity of the spill. However, in general, the recommended method is to add a neutralizing agent, such as sodium bicarbonate, to the spill. This will help to neutralize the acid and prevent it from spreading or causing damage to the surrounding area.

Using a strong base to neutralize the spill can also be effective but requires more caution as it can be dangerous if not handled properly. Pouring water over the spill can be helpful to dilute the acid and prevent it from spreading, but it may not fully neutralize the acid. Mopping up the spill with paper towels is not recommended as it can spread the acid and increase the risk of injury. It is important to wear protective gear, such as gloves and goggles, when handling spilled acid and to follow proper procedures for clean-up and disposal. Neutralizing spilled acid is a critical process that requires a careful approach to prevent accidents and injuries. In case of acid spills, it is essential to act quickly to prevent the acid from causing further damage. Neutralizing the spill with a suitable neutralizing agent such as sodium bicarbonate is the best method as it ensures that the acid is completely neutralized and does not cause further harm. Pouring water over the spill can be helpful, but it does not fully neutralize the acid and may not prevent it from spreading. It is important to handle spilled acid with caution and to wear protective gear to minimize the risk of injury. Proper procedures for clean-up and disposal should be followed to ensure that the acid is properly contained and disposed of.

To know more about Water visit:

https://brainly.com/question/31641293

#SPJ11

Tetrasulfur dinitride decomposes explosively when heated. What is its formula?

Answers

Tetrasulfur dinitride, with the chemical formula S₄N₂, is a compound composed of four sulfur atoms (S) and two nitrogen atoms (N).

It is known for its explosive nature when subjected to heat or shock. The compound undergoes a rapid decomposition reaction under these conditions, releasing large amounts of energy and generating highly reactive products. This decomposition is exothermic and can result in an explosion. The exact mechanism of the decomposition is complex, involving the breakage of the S-N bonds and the formation of various sulfur and nitrogen-containing species. Due to its explosive properties, tetrasulfur dinitride is handled with extreme caution and is used primarily in specialized applications.

Learn more about “ chemical formula  “ visit here;

https://brainly.com/question/32018188

#SPJ4

a chemical equation can be balanced by . question 31 options: adding coefficients to equalize the number of atoms of each element on both sides of the reaction arrow changing the subscripts of the atoms in the formulas to equalize the number of atoms on both sides of the reaction arrow subtracting atoms from the side of the equation that has too many atoms of a particular element adding single atoms to the side of the equation that needs them

Answers

A chemical equation is a symbolic representation of a chemical reaction that shows the reactants and products involved in the reaction.

A chemical equation is a symbolic representation of a chemical reaction that shows the reactants and products involved in the reaction. In order for a chemical equation to be balanced, the number of atoms of each element on both sides of the reaction arrow must be equal. This means that the equation needs to be adjusted by adding coefficients to the formulas of the reactants and products. The coefficients are placed in front of the formulas to indicate the number of molecules or atoms involved in the reaction. Changing the subscripts of the atoms in the formulas is not allowed because it would change the identity of the substance. Subtraction of atoms is also not allowed because it would result in a different reaction. Therefore, the only way to balance a chemical equation is by adding coefficients to equalize the number of atoms of each element on both sides of the reaction arrow. This ensures that the reaction is both accurate and complete.

To know more about chemical reaction visit: https://brainly.com/question/29762834

#SPJ11

In need of help
The system below was at equilibrium in a
3.5 L container. What change will occur
for the system when the container is
expanded to 12.75 L?
2SO₂(g) + O₂(g) = 2SO3(g) + 198 kJ
Hint: How many moles of gas are on each side?
A. The reactions shifts to
the right (products) to
produce fewer moles of
gas.
B. The reactions shifts to
the left (reactants) to
produce more moles of
gas.
C. There is no change
because there are the
same number of moles of
gas on both sides.

Answers

28463 gb alt to it attacked

510g of sodium carbonate, na2co3, are dissolved in 2.2×103g of ethylene glycol, c2h4(oh)2. what is the molality of sodium carbonate?

Answers

The molality of sodium carbonate in the given solution is 2.19 mol/kg.

To find the molality of sodium carbonate in the given solution, we need to use the formula:
molality = moles of solute / mass of solvent (in kg)
First, let's calculate the moles of sodium carbonate present in 510g of Na2CO3:
molar mass of Na2CO3 = 2(23) + 12 + 3(16) = 106 g/mol
moles of Na2CO3 = 510g / 106 g/mol = 4.81 mol
Next, we need to convert the mass of ethylene glycol to kg:
mass of ethylene glycol = 2.2×10^3 g = 2.2 kg
Now, we can calculate the molality of sodium carbonate:
molality = 4.81 mol / 2.2 kg = 2.19 mol/kg
It is important to note that molality is a useful unit for expressing concentrations in solutions as it does not depend on the temperature or the volume of the solution, but rather on the mass of the solvent.

To know more about molality visit:

https://brainly.com/question/30640726

#SPJ11

A mixture of gases contains 0.290 mol CH4, 0.270 mol C2H6, and 0.280 mol C3H8. The total pressure is 1.45 atm. Calculate the partial pressures of the gases.
(a) CH4
(b) C2H6
(c) C3H8
in atm

Answers

A mixture of gases contains 0.290 mol [tex]CH_4[/tex] , 0.270 mol[tex]C_2H_6[/tex], and 0.280 mol [tex]C_3H_8[/tex]. The total pressure is 1.45 atm. the partial pressures of the gases in the mixture are:

(a)[tex]CH_4[/tex]: 0.4205 atm

(b) [tex]C_2H_6[/tex]: 0.3915 atm

(C) [tex]C_3H_8[/tex]: 0.406 atm

To calculate the partial pressures of the gases in the given mixture, we can use Dalton’s law of partial pressures, which states that the total pressure exerted by a mixture of non-reacting gases is equal to the sum of the partial pressures of each gas.

Given that the total pressure is 1.45 atm, we need to calculate the partial pressures of each gas individually.

(a) [tex]CH_4[/tex]:

The mole fraction  can be calculated as follows:

Mole fraction of [tex]CH_4[/tex] = (moles of [tex]CH_4[/tex]) / (total moles)

                   = 0.290 mol / (0.290 mol + 0.270 mol + 0.280 mol)

                   = 0.290

The partial pressure of [tex]CH_4[/tex] can then be calculated using the mole fraction:

Partial pressure of [tex]CH_4[/tex] = Mole fraction of [tex]CH_4[/tex] * Total pressure

                      = 0.290 * 1.45 atm

                      = 0.4205 atm

(b) [tex]C_2H_6[/tex]:

Following the same steps as above, we calculate the mole fraction of [tex]C_2H_6[/tex] :

Mole fraction = 0.270 mol / (0.290 mol + 0.270 mol + 0.280 mol)

                    = 0.270

Partial pressure of [tex]C_2H_6[/tex] = Mole fraction of [tex]C_2H_6[/tex] * Total pressure

                       = 0.270 * 1.45 atm

                       = 0.3915 atm

(C) [tex]C_3H_8[/tex]:

Similarly, we calculate the mole fraction:

Mole fraction = 0.280 mol / (0.290 mol + 0.270 mol + 0.280 mol)

                     = 0.280

Partial pressure of [tex]C_3H_8[/tex]  = Mole fraction of[tex]C_3H_8[/tex] * Total pressure

                       = 0.280 * 1.45 atm

                       = 0.406 atm

Learn more about Dalton’s law of partial pressures here:

https://brainly.com/question/14119417

#SPJ11

given the information above, what type of particle was emitted? question 50 options: neutron alpha particle proton electron g

Answers

Based οn the infοrmatiοn prοvided in the image, the type οf particle that was emitted is an alpha particle (α).

What is alpha particle?

An alpha particle is a type οf subatοmic particle that cοnsists οf twο prοtοns and twο neutrοns, making it identical tο the nucleus οf a helium-4 atοm. It is represented by the symbοl α. Alpha particles are relatively large and carry a pοsitive electric charge οf +2. Due tο their size and charge, they have a limited range and can be easily absοrbed οr deflected by matter.

Alpha particles are cοmmοnly emitted during certain types οf radiοactive decay, such as alpha decay, where a heavy nucleus releases an alpha particle tο becοme mοre stable. They have lοw penetratiοn pοwer and can be stοpped by a few centimeters οf air οr a sheet οf paper, making them less harmful cοmpared tο οther types οf radiatiοn such as gamma rays οr beta particles.

Learn more about alpha particle

https://brainly.com/question/24276675

#SPJ4

Complete question:

the actual chemical reaction of combining alloy and mercury is

Answers

The chemical reaction that occurs when combining an alloy with mercury is called amalgamation. In this process, the alloy, usually made of metals like silver, gold, or copper, is mixed with mercury to form a homogeneous mixture called an amalgam.

The reaction involves the formation of bonds between the atoms of the alloy metals and the mercury, resulting in a new compound with unique properties. This process is often used in industries like dentistry, where dental amalgam is used for tooth fillings, or in mining, where it is used to extract precious metals from ores. The amalgamation reaction is important in various applications due to the enhanced properties of the amalgam, such as improved malleability, strength, and corrosion resistance.

To know more about Reaction visit:

https://brainly.com/question/30344509

#SPJ11

Draw the most stable conformation of (a) ethylcyclohexane (b) 3-isopropyl-1,1-dimethylcyclohexane (c) cis-1-tert-butyl-4-isopropylcyclohexane

Answers

The 3-isopropyl-1,1-dimethylcyclohexane equatorial ethyl group's most stable configuration (more stable).  The equatorial conformer of ethylcyclohexane is 7.4 kJ/mol more stable than the axial conformer.

a) Ethylcyclohexane: The most stable conformation of ethylcyclohexane is the chair conformation. In this conformation, equatorial ethyl group's the cyclohexane ring adopts a chair shape, and the ethyl group is equatorial to minimize steric hindrance.

b) 3-Isopropyl-1,1-dimethylcyclohexane: The most stable conformation of 3-isopropyl-1,1-dimethylcyclohexane is also the chair conformation. In this conformation, the bulky isopropyl and dimethyl groups are positioned in equatorial positions to minimize steric hindrance.

c) cis-1-tert-butyl-4-isopropylcyclohexane: The most stable conformation of cis-1-tert-butyl-4-isopropylcyclohexane is also the chair conformation. In this conformation, the tert-butyl and isopropyl groups are oriented in equatorial positions to minimize steric hindrance.

These descriptions provide a general idea of the most stable conformations for the given molecules. It is important to note that a visual representation or a three-dimensional model would be more helpful for a detailed analysis of their conformations.

Learn more about equatorial ethyl group's here

https://brainly.com/question/29753609

#SPJ11

What is the ratio of [NO3] to [NH4*] at 298 K if Po2 = 0. 180 atm? Assume that the reaction is at equilibrium

Answers

The ratio of [NO₃] to [NH₄] at 298 K if PO₂ = 0.180 atm is 1:1.

The given chemical reaction at equilibrium is: NH₄NO₃(s) → NH₄⁺(aq) + NO₃⁻(aq)

The expression for the equilibrium constant of this reaction is:

Kc = [NH₄⁺][NO₃⁻] / [NH₄NO₃]

It is given that the partial pressure of O₂ is zero i.e., PO₂ = 0. So, it can be said that O₂ does not affect the concentration of NH₄⁺, NO₃⁻, and NH₄NO₃ and hence does not affect the equilibrium concentration of these species. Hence, their concentrations will remain unchanged at equilibrium at 298 K.

Thus, the ratio of [NO₃] to [NH₄⁺] at 298 K if PO2 = 0.180 atm is 1. This is because NH₄NO₃ dissociates to NH₄⁺ and NO₃⁻, so for every NH₄⁺ ion formed, one NO₃⁻ ion is also formed. Hence, their ratio is 1:1 or simply 1.

Learn more about ratio: https://brainly.com/question/4484393

#SPJ11

use h° and s° values to find the temperature at which these sulfur allotropes reach equilibrium at 1 atm. (note: the answer should have one significant figure.) s(rhombic) s(monoclinic)

Answers

To find the temperature at which sulfur allotropes reach equilibrium at 1 atm, we can use the Gibbs free energy equation is ΔG = ΔH - TΔS

At equilibrium, ΔG is zero, and we can rearrange the equation as T = ΔH / ΔS. Given that the pressure is 1 atm, we can assume that ΔH is the enthalpy change per mole of sulfur and ΔS is the entropy change per mole of sulfur. The transition from rhombic sulfur to monoclinic sulfur involves an increase in entropy, as the monoclinic form is more disordered. Therefore, ΔS will be positive.

However, we are not provided with specific values for ΔH and ΔS. To determine the temperature at equilibrium, we would need these values to calculate the ratio ΔH / ΔS. Without the values, it is not possible to provide a specific temperature. However, if we assume typical values for ΔH and ΔS, we could estimate the temperature.

For example, assuming ΔH = 10 kJ/mol and ΔS = 50 J/mol·K, we could calculate T ≈ (10 kJ/mol) / (50 J/mol·K) ≈ 200 K. This rough estimate suggests that the sulfur allotropes may reach equilibrium at approximately 200 K. Keep in mind that this is only an illustrative example, and the actual temperature would require specific values for ΔH and ΔS.

Learn more about sulfur allotropes here

https://brainly.com/question/31389199

#SPJ11

what is the molarity of a solution prepared by mixing 300 ml of a 0.250 m solution of h2so4 with 700 ml of a 6.00 m solution of h2so4?

Answers

The molarity of the resulting solution, prepared by mixing 300 mL of a 0.250 M H2SO4 solution with 700 mL of a 6.00 M H2SO4 solution, is approximately 2.14 M (option b).

To find the molarity of the resulting solution, we can use the equation: M1V1 = M2V2, where M1 and V1 represent the molarity and volume of the initial solution, and M2 and V2 represent the molarity and volume of the final solution. Given:

M1 = 0.250 M (for the 300 mL solution)

V1 = 300 mL

M2 = 6.00 M (for the 700 mL solution)

V2 = 700 mL

To calculate the molarity of the resulting solution, we substitute the given values into the equation:

M1V1 = M2V2

(0.250 M)(300 mL) = (M2)(700 mL)

Solving for M2:

M2 =\frac{ (0.250 M)(300 mL)}{ (700 mL)}

≈ 0.1071 M

Therefore, the molarity of the resulting solution is approximately 2.14 M (option b).

learn more about  molarity Refer: https://brainly.com/question/31545539

#SPJ11

complete question: What is the molarity of a solution prepared by mixing 300. mL of a 0.250 M solution of H2SO4 with 700 mL of a 6.00 M H2SO4 solution?

a. 4.20 M

b. 2.14 M

c. 4.28 M

d. 6.24 M

if we start off with 2.35x10-2 mol of li3po4 and excess cucl2, what mass of cu3(po4)2 would be produced (what is the theoretical yield)?

Answers

To determine the theoretical yield of Cu3(PO4)2, we first need to write a balanced chemical equation for the reaction between Li3PO4 and CuCl2. This balanced equation is:
2Li3PO4 + 3CuCl2 → Cu3(PO4)2 + 6LiCl


From this equation, we can see that 2 moles of Li3PO4 react with 3 moles of CuCl2 to produce 1 mole of Cu3(PO4)2. This means that the molar ratio of Li3PO4 to Cu3(PO4)2 is 2:1.
Using the given initial amount of Li3PO4 (2.35x10-2 mol) and the molar ratio, we can calculate the theoretical yield of Cu3(PO4)2:
2.35x10-2 mol Li3PO4 × (1 mol Cu3(PO4)2 / 2 mol Li3PO4) = 1.175x10-2 mol Cu3(PO4)2
To determine the mass of Cu3(PO4)2 produced, we need to multiply the moles by the molar mass of Cu3(PO4)2:
1.175x10-2 mol Cu3(PO4)2 × 441.136 g/mol = 5.18 g Cu3(PO4)2 (rounded to two significant figures)
Therefore, the theoretical yield of Cu3(PO4)2 from 2.35x10-2 mol of Li3PO4 and excess CuCl2 is 5.18 g.

To know more about balanced equation visit:

https://brainly.com/question/31242898

#SPJ11

place the following in order of decreasing entropy at 298 k. ar, xe, h2 , c2h4

Answers

Entropy is a measure of the disorder or randomness in a system. The greater the disorder, the higher the entropy. At 298 K, the order of decreasing entropy for the given elements and compounds is as follows: Xe > Ar > C2H4 > H2.

Xenon (Xe) has the highest atomic number among the given elements and is a noble gas, which means it has a filled outer electron shell. It exists as a monatomic gas at standard conditions, making it highly disordered and thus having the highest entropy. Argon (Ar) also belongs to the noble gas family and is a monatomic gas at standard conditions, hence having a slightly lower entropy than Xe. Ethylene (C2H4) is a hydrocarbon and has more degrees of freedom to move and rotate than H2, making it more disordered and having a higher entropy. Hydrogen gas (H2) has the least number of atoms among the given elements and compounds and is the most ordered, having the lowest entropy.
Therefore, the correct order of decreasing entropy at 298 K is Xe > Ar > C2H4 > H2.

learn more about Entropy Refer: https://brainly.com/question/32070225

#SPJ11

complete question:

place the following in order of decreasing entropy at 298 k. ar, xe, h2 , c2h4

A)Xe > Ar >C2H4 > H2 D)C2H4 > H2 > Xe>Ar B) Ar>Xe > H2 > C2H4 E)H2 > C2H4 > Xe > A

A buffer solution is made by
O diluting NaOH solution with water
O neutralizing a strong acid with a strong base
O dissolving NaCl in water
O mixing a solution of a weak acid or base with a solution of one of its salts

Answers

A buffer solution is made by mixing a solution of a weak acid or base with a solution of one of its salts. This type of solution helps to maintain a constant pH by resisting changes in the acidity or basicity of a solution.

The weak acid or base in the solution can react with any added acid or base, while the salt component of the solution provides additional ions to help maintain the equilibrium and prevent large changes in pH. This is why buffer solutions are commonly used in biological and chemical applications where precise pH control is important. It is worth noting that diluting NaOH solution with water, neutralizing a strong acid with a strong base, and dissolving NaCl in water do not result in buffer solutions.

It is important to note that buffer solutions are crucial in various industries such as pharmaceutical, food, and beverage production, where precise pH control is vital.

To know more about buffer solution visit:

https://brainly.com/question/31428923

#SPJ11

You have a 3 mg/ml protein sample. What is its concentration in microgram/microliter?

Answers

To convert 3 mg/ml to microgram/microliter, we need to use the conversion factor of 1 mg = 1000 micrograms and 1 ml = 1000 microliters. First, we can convert 3 mg/ml to micrograms/ml by multiplying it by 1000, which gives us 3000 micrograms/ml.

To convert the concentration of your protein sample from mg/ml to µg/µl, you simply need to convert the mass unit from milligrams (mg) to micrograms (µg). There are 1,000 µg in 1 mg. Your current protein concentration is 3 mg/ml. To find the concentration in µg/µl, follow these steps:
1. Convert milligrams to micrograms: 3 mg x 1,000 µg/mg = 3,000 µg.
2. Since there are 1,000 µl in 1 ml, divide the µg by 1,000: 3,000 µg ÷ 1,000 µl = 3 µg/µl.
So, the concentration of your protein sample is 3 µg/µl.To convert this to micrograms/microliter, we can divide by 1000, which gives us 3 micrograms/microliter.

To know more about protein

https://brainly.com/question/29633638

#SPJ11

a block of copper of unknown mass has an initial temperature of 65.4 ∘c . the copper is immersed in a beaker containing 95.7 g of water at 22.7 ∘c . when the two substances reach thermal equilibrium, the final temperature is 24.2 ∘c . what is the mass of the copper block?

Answers

To determine the mass of the copper block, we can use the principle of conservation of energy. The heat lost by the copper block will be equal to the heat gained by the water in the beaker.

The equation for heat transfer is Q = m * c * ΔT, Where: Q is the heat transferred, m is the mass, c is the specific heat capacity and ΔT is the change in temperature.

The specific heat capacity of copper is approximately 0.39 J/g·°C, and for water, it is about 4.18 J/g·°C.

Let's calculate the heat gained by the water:

Q_water = m_water * c_water * ΔT_water

m_water = 95.7 g (mass of water)

c_water = 4.18 J/g·°C (specific heat capacity of water)

ΔT_water = (final temperature - initial temperature) = (24.2 °C - 22.7 °C) = 1.5 °C

Q_water = 95.7 g * 4.18 J/g·°C * 1.5 °C = 599.595 J

Now, let's calculate the heat lost by the copper block:

Q_copper = m_copper * c_copper * ΔT_copper

c_copper = 0.39 J/g·°C (specific heat capacity of copper)

ΔT_copper = (final temperature - initial temperature) = (24.2 °C - 65.4 °C) = -41.2 °C

We have ΔT_copper as a negative value because the copper block loses heat.

Q_copper = m_copper * 0.39 J/g·°C * (-41.2 °C) = -16.068 m_copper J

According to the principle of conservation of energy, the heat gained by the water is equal to the heat lost by the copper block:

Q_water = Q_copper

599.595 J = -16.068 m_copper J

Solving for m_copper:

m_copper = 599.595 J / (-16.068 J/g)

m_copper ≈ -37.41 g

Learn more about principle of conservation of energy here ;

https://brainly.com/question/16881881

#SPJ11

Final answer:

To find the mass of the copper block, we can use the equation for heat transfer. The heat lost by the copper block is equal to the heat gained by the water.

Explanation:

To determine the mass of the copper block, we can use the principle of heat transfer, specifically the equation for heat gained or lost. In this case, the heat lost by the copper block is equal to the heat gained by the water.

We can use the equation: heat lost by copper = heat gained by water.

Plugging in the given values, we can solve for the mass of the copper block.

Learn more about Heat transfer here:

https://brainly.com/question/34419089

#SPJ11

How many grams of Fe are required to react with 162.8 grams of CuO?

Answers

Approximately 113.42 grams of Fe are required to react with 162.8 grams of CuO based on the stoichiometric ratio of the balanced chemical equation.

To determine the number of grams of Fe required to react with 162.8 grams of CuO, we need to consider the balanced chemical equation for the reaction between iron (Fe) and copper(II) oxide (CuO):

Fe + CuO → FeO + Cu

The balanced equation tells us that the stoichiometric ratio between Fe and CuO is 1:1. This means that one mole of Fe reacts with one mole of CuO.

To find the number of moles of CuO, we divide the given mass (162.8 grams) by the molar mass of CuO. The molar mass of CuO is calculated as follows:

Molar mass of Cu = 63.55 g/mol

Molar mass of O = 16.00 g/mol

Molar mass of CuO = 63.55 g/mol + 16.00 g/mol = 79.55 g/mol

Moles of CuO = mass of CuO / molar mass of CuO

= 162.8 g / 79.55 g/mol

≈ 2.05 mol

Since the stoichiometric ratio between Fe and CuO is 1:1, the number of moles of Fe required will also be approximately 2.05 mol.

To find the mass of Fe required, we multiply the number of moles of Fe by the molar mass of Fe:

Mass of Fe = moles of Fe × molar mass of Fe

≈ 2.05 mol × 55.85 g/mol

≈ 113.42 grams

For more such questions on CuO

https://brainly.com/question/27853798

#SPJ8

This phytoplankton has cell walls of calcium carbonate (CaCO3) and are responsible for the sediments that ultimately formed the White Cliffs of Dover, UK.
a) diatoms
b) bacteriaplankton
c) dinoflagellates
d) copepods
e) coccolithophorids

Answers

The phytoplankton responsible for the sediments that formed the White Cliffs of Dover, UK are coccolithophorids.

The phytoplankton responsible for the sediments that formed the White Cliffs of Dover, UK are coccolithophorids. These tiny organisms have cell walls made of calcium carbonate (CaCO3) plates called coccoliths. When these organisms die, their coccoliths sink to the ocean floor and accumulate over time, forming sedimentary rocks like those seen in the White Cliffs. Coccolithophorids are found in oceans all around the world and play an important role in the global carbon cycle, as they can both absorb and release carbon dioxide. To provide a detailed explanation of the specific type of phytoplankton responsible for the formation of the White Cliffs.

To know more about phytoplankton visit: https://brainly.com/question/10279696

#SPJ11

what percent of commercial chemicals have been tested for toxicity

Answers

The percentage of commercial chemicals that have been tested for toxicity is unknown as there is no comprehensive database or study available to provide an accurate figure.

Determine pecentage of testing the toxicity of chemicals?

Testing the toxicity of chemicals is a complex and time-consuming process, and there are numerous chemicals used in commercial products worldwide.

The sheer volume of chemicals, combined with the cost and time required for testing, makes it challenging to assess the exact percentage of chemicals that have undergone toxicity testing.

Furthermore, different regulatory bodies have different requirements for toxicity testing, adding further complexity to the issue. While some chemicals undergo extensive testing due to their known hazardous nature or regulatory requirements, many others have not been thoroughly assessed for toxicity.

It is crucial to prioritize and encourage comprehensive testing of commercial chemicals to ensure the safety of human health and the environment.

Therefore, the percentage of commercial chemicals tested for toxicity is unknown due to the lack of comprehensive data.

To know more about toxicity, refer here:

https://brainly.com/question/1563060#

#SPJ4

a scientist identifies two different structures that both specify the same amino acid. how would the scientist describe these structures

Answers

If a scientist identifies two different structures that both specify the same amino acid, the scientist would likely describe these structures as "isomers."

Isomers are molecules that have the same chemical formula but differ in their arrangement of atoms. In this case, the two structures would have the same number and types of atoms, but the way the atoms are arranged would be different. This could lead to differences in the properties and reactivity of the structures. The scientist may also describe these structures as "stereoisomers" if they differ in their three-dimensional arrangement of atoms around a central carbon atom.

To know more about amino acid visit:

https://brainly.com/question/31872499

#SPJ11

Find the molecular formula for lindane given its percen composition: 24.78% c, 2.08%h, and 73.14%cl. The approximate molar mass is 290g/mol.

Answers

To determine the molecular formula of lindane, we need to calculate the empirical formula first using the percentage composition and molar masses of the elements. Therefore, the molecular formula for lindane is CHCl.

Convert the percentages to grams:

C: 24.78% of 290g/mol = 71.804 g

H: 2.08% of 290g/mol = 6.032 g

Cl: 73.14% of 290g/mol = 211.836 g

Convert the grams to moles using the molar masses:

C: 71.804 g / 12.01 g/mol = 5.981 mol

H: 6.032 g / 1.008 g/mol = 5.981 mol

Cl: 211.836 g / 35.45 g/mol = 5.981 mol

Divide the number of moles of each element by the smallest number of moles:

C: 5.981 mol / 5.981 mol = 1

H: 5.981 mol / 5.981 mol = 1

Cl: 5.981 mol / 5.981 mol = 1

The empirical formula of lindane is C₁H₁Cl₁.

To know more about molecular formulas

https://brainly.com/question/15960587

#SPJ11

Other Questions
what component accounts for the usually sweet taste of fruits Specify the order that the reagents are used in the reaction. 5 ts A) KOC(CH3)3 (2 equiv) in DMSO B) POCIz in pyridine C) Cl2 eBook A B Print ferences first second third which of the following is printed as a result of the call mystery (123456) ? a) many digits are printed due to infinite recursion. b)123456. Evaluate the indefinite integral. (Use C for the constant of integration.) X5 sin(1 + x7/2) dx + _________ are dedicated computers that can hold actual database. f(4+h)-f(4) Find lim h h-0 if f(x) = x + 5. + f(4+h) f(4) lim h h-0 (Simplify your answer.) The set {(1, 4, 6),(1, 5, 8) (2,1,1)(0,1,0)} is a linearly independent subset of r3. A survey asked families with 1, 2, 3, or 4 children how much they planned to spend on vacation this summer. The data collected by the survey are shown in the table.What is the probability that a family with 3 children is budgeting to spend more than $3,000 on vacation? Round your answer to the nearest hundredth, like this: 0.42 (Its not B)A. 0.30B. 0.19 (not this one)C. 0.06D. 0.26 how do retailers add value to the products bought by consumers? please check out and research 2 retailers on-line and discover what they are doing to add value online and in local store. Solve the separable differential equation dor 7 dt 2 and find the particular solution satisfying the initial condition z(0) = 4. = z(t) = Question Help: Video Post to forum Add Work Submit Question Question 6 B0/1 pt 32 Details Solve dy dt = 5(y - 10), y(0) = 7 y(t)= Perdaris Enterprises had an expenditure rate ofE' (x) = e'. * dollars per day and an income rate of I'(x) = 98.8 - Is dollars per day on a particular job, where r was the number of days from the start of the job. The company's profit on that job will equal total income less total expendi- tures. Profit will be maximized if the job ends at the optimum time, which is the point where the two curves meet. Find thefollowing.(a) The optimum number of days for the job to last(b) The total income for the optimum number of days(c) The total expenditures for the optimum number of days(d) The maximum profit for the job the only non-plant source of carbohydrates are foods derived from Complete the following sentence:During the secretory phase of the menstrual cycle .- the Graafian follicle forms- LH reaches its highest levels- progesterone levels are at their highest- estrogen reaches its highest levels Effective leader behaviors can be systematically improved and developed. true false After 55 years, what mass (in g) remains of a 200.0 g sample of a radioactive isotope with a half-life of 10.0 years? a) 170 g b) 4.4 g c) 0.22 g d) 51 g crossover youth who are receiving services from both the juvenile justice and dependency courts simultaneously are referred to as dually adjudicated youth. A machine can be purchased for $160,000 and used for five years, yielding the following income. This income computation includes annual depreciation expense of $32,000. Year 1 Year 2 Year 4 Year 5 Year 3 $57,000 Income $10,700 $26,700 $40,100 $106,800 Compute the machine's payback period. (Round payback period answer to 2 decimal places.) Year Net Income Depreciation Net Cash Flow Cumulative Net Cash Flow Initial invest $ $ (160,000) Year 1 $ 10,700 Year 2 26,700 Year 3 57,000 Year 4 40,100 0 Year 5 106,800 0 Payback period (160,000) which is the most significant ethical pitfall of entrepreneurship create an outline that organizes the major events of Samuel Beckett's Endgame into a traditional five-act structure. Your outline must include explanations for why you chose the events you did in each act. ACT IExplanation:Events:[first event][second event]ACT IIExplanation:Events: how would a taxpayer calculate the california itemized deduction limitation